
Spiking Neural P Systems and Kernel P Systems

Marian Gheorghe1, Florentin Ipate2, Kumar Kannan3,
Savas Konur1, Lakshmanan Kuppusamy3*, Raluca Lefticaru1,

Anand Mahendran4, Mihai Ionuţ Niculescu2

1School of Computer Science and Electronics, University of Bradford,
West Yorkshire, BD7 1DP, United Kingdom.

2Department of Computer Science, Faculty of Mathematics and
Computer Science, University of Bucharest, Str Academiei 14, Romania.

3School of Computer Science and Engineering, VIT, Vellore, 632014,
Tamilnadu, India.

4School of Computer Science and Engineering, VIT, Chennai, 600127,
Tamilnadu, India.

*Corresponding author(s). E-mail(s): klakshma@vit.ac.in;
Contributing authors: m.gheorghe@bradford.ac.uk; ipate@gmail.com;
kkumar@vit.ac.in; s.konur@bradford.ac.uk; r.lefticaru@bradford.ac.uk;

manand@vit.ac.in; ionutmihainiculescu@gmail.com;

Abstract

Spiking neural P systems represent one the most dynamic and active research
area of membrane computing, with many variants being defined and investigated,
and a broad spectrum of applications reported. Often, each newly introduced
spiking neural P system is compared with others to reveal its potential. How-
ever, there is a need to compare them from another perspective, when they are
all represented with the same instrumentation within a given framework and
where quantitative metrics can precisely describe the complexity of their repre-
sentations. In this paper a selection of the best known and investigated classes
of spiking neural P systems are mapped into kernel P system models and dif-
ferent encodings of the computation results and strategies of using the rules are
investigated. Complexity metrics associated with the translation processes are
assessed. Specific methods to check model correctness and to provide test sets
for implementations are used for an example in order to illustrate the connection
between these P systems.

1

Keywords: membrane computing, spiking neural P systems, kernel P systems,
descriptional and time complexity, testing, verification, model checking,
kPWorkbench.

1 Introduction

Membrane computing, a research field initiated by Gh. Păun [34, 35], is a computing
paradigm inspired by the structure and bio-chemical interactions of the living cells.
The key models are called membrane systems or P systems. The field has developed
very fast on various research directions and many classes of membrane systems (P
systems) have been investigated. These may be classified as cell-like, tissue-like and
neural-like P systems. A presentation of the most important membrane computing
models is available in [36, 37] and more recently in a survey paper [48].

A class of neural-like P systems, called Spiking Neural P systems (SN P systems,
for short), has been introduced in [14], inspired by the neurophysiological behaviour of
neurons (in brain) sending electrical impulses along axons to other neurons. Significant
results on SN P systems have been reported in the literature. A multitude of SN P
system models have been considered and investigated with features such as: anti-spikes
and inhibitory synapses [28], inhibitory rules [40], astrocytes [30], polarizations [38,
58], request rules [50, 56], multiple channels [46], extended channel rules [25], colored
spikes [52], white hole neurons [49], lateral inhibition [24], rules on synapses [51],
weights and potential (threshold) [55], dynamic threshold [44], weights on synapses
and extended rules with delay [32], weights and delays on synapses [23], dendrites
[39], plasticity [3, 26], with neuron division and budding[29], scheduled synapses [2];
or new classes of systems: axon P systems in [62], fuzzy reasoning SN P systems [45],
coupled SNP [42], numerical SN P systems [57], nonlinear SN P systems [41]. Various
research topics based on SN P system models have been considered. A bibliography
of SN P systems is available in [31], a survey of the main classes of SN P systems is
presented in [22] and of learning SN P systems is described in [5]. Theoretical results
and applications of SN P systems are discussed in [47]. In 2024 two research textbooks
on SN P systems have been published [43, 61]. For several of the above mentioned SN
P systems have been considered different strategies for using the rules as well as ways
of encoding the results of the computation - the key topics in this respect have been
presented in [22].

Another type of P systems, called kernel P systems (kP systems, for short), has
been introduced in [9] in order to capture in a unified manner features of existing
membrane computing models together with new concepts, such as types, guarded rules
using Boolean conditions, user defined execution strategy for each component type.
All these make the kP system model more amenable for describing different problems
occurring in various areas, from specific computer science topics, such as communica-
tion and synchronisation [8], to applications in synthetic biology [19, 18]. kP systems
have been conceived as a membrane computing model allowing to specify problems,
verify the models correctness and test the implementations. They are supported by an
expressive domain specific formal language allowing the models to be simulated with

2

a software framework, called kPWorkbench [1], which also includes a verification
component [11]. A detailed presentation of this tool has been made in [20]. The mod-
elling, simulation, verification and testing aspects of kP systems have been presented
in [7, 8].

In this paper we investigate, for several classes of SN P systems using regular
expressions that can be expressed with features of kP systems, how these are mapped
into kP systems exhibiting the same behaviour. The classes of SN P systems consid-
ered are standard and extended SN P systems with and with no delay, with colored
spikes, multiple channels, anti-spikes, polarizations, weights on synapses, potential
and threshold. Two types of encoding the computation results and various strategies
of using the rules that are defined and investigated for SN P systems are studied in
the context of kP systems as well. A logical gate example illustrates how different SN
P systems and their kP system counterparts can model it. Finally, a short presenta-
tion on how testing and verification methods developed for kP systems can be used
in the context of using SN P systems to model the logical gate example.

Previously, a formal framework for specifying different types of SN P systems
has been devised [54]. This approach shows how the same formal environment cap-
ture specific features of different types of SN P systems. Our investigation allows to
define for each of the SN P systems investigated algorithms for translating such sys-
tems into corresponding kP systems. In our approach, metrics to assess the impact
of various features of different classes of SN P systems on the complexity of their kP
system representations are presented. Moreover, the instrumentation provided by the
kP system environment facilitates the verification of the model correctness, through
model checking methods, of different SN P systems and the automated testing of their
implementations.

This paper is structured as follows: Section 2 presents some preliminary concepts
and basic definitions of SN P and kP systems. Section 3 provides the key results and
outcomes of the paper, presenting the mapping of different classes of SN P systems into
corresponding kP systems and how different encodings of the results and strategies
of using the rules of SN P systems are represented in the context of kP systems;
complexity metrics associated with the mapping processes involved are investigated.
For the logical gate example modelled with an SN P system, a testing approach for
validating this application is presented. This uses a test set derived from the inferred
X-machine obtained from the computation sequences, up to a certain limit, of the kP
system model (that corresponds to the SN P system modelling the logical gate) is
presented in Section 4, together with the formal verification, through model checking,
of some properties of the SN P system. Finally, conclusions are presented in Section 5.

2 Preliminaries and basic definitions

Some concepts, notations and basic definitions used subsequently in this paper are
introduced in this section. More formal language theory and membrane computing
concepts and results can be found in [36, 37].

3

For a finite alphabet A = {a1, · · · , ap}, A∗ denotes the set of all strings (sequences)
over A. The empty string is denoted by λ and A+ = A∗ \ {λ} denotes the set of
non-empty strings.

A regular expression over an alphabet A is defined as follows: (i) λ and each a ∈ A
is a regular expression; (ii) if E1, E2 are regular expressions over A, then (E1)(E2),
(E1)∪(E2) and (E1)

+ are regular expressions over A; and (iii) nothing else is a regular
expression over A. Parentheses, “(” and “)”, are not in A, they are used to indicate
the order of applying the operators of the regular expression. When no confusion may
appear, they can be omitted. E+

1 ∪λ can be written as E∗
1 . With each regular expression

E, a regular language L(E) is associated as follows: (i) L(λ) = λ, and L(a) = {a},
for a ∈ A; (ii) L((E1)(E2)) = L(E1)L(E2), L((E1) ∪ (E2)) = L(E1) ∪ L(E2) and
L((E1)

+) = L(E1)
+, for any regular expressions E1, E2.

A multiset over A is a mapping f : A → N, represented as a string a
f(a1)
1 · · · af(ap)

p ,
where the order is not important, and the elements which are not in the support of f
(i.e., elements aj , 1 ≤ j ≤ p, having f(aj) = 0) are omitted. In the sequel, multisets
will be represented by such strings.

The standard and extended Spiking Neural P systems (SN P systems) are defined
below. Later, other variants of SN P systems will be introduced by only presenting
their key features distinguishing them from the previous ones. A restricted class of
kernel P systems (kP systems) is also presented in this section as well..

2.1 Standard and extended SN P systems

The definition of a standard SN P system is given in [14].

Definition 1 A Spiking Neural P system of degree m, m ≥ 1, is a tuple

Π = (O, σ1, · · · , σm, syn, i0),

where

• O = {a} is a singleton alphabet (a is called spike);
• σi is a neuron, σi = (ni, Ri), 1 ≤ i ≤ m, where

– ni ≥ 0 is the initial number of spikes from σi;
– Ri is a finite set of rules of the following two forms:

∗ E/ac → a; d where E is a regular expression over {a}, and c ≥ 1, d ≥ 0
are natural numbers (spiking or firing rules);

∗ as → λ, where s ≥ 1 is a natural number, such that for any spiking rule
E/ac → a from Ri, a

s /∈ L(E) (forgetting rules);

• syn = {(i, j)|1 ≤ i, j ≤ m, i ̸= j} (synapses between distinct neurons);
• i0 ∈ {1,m} indicates the output neuron.

The system evolves in steps marked by a global discrete clock. At each time step,
in each neuron having enabled rules, only one of them must fire/be applied. If more
than a rule is enabled then one of them is non-deterministically chosen and is applied.

4

A rule E/ac → a; d is enabled (can fire), in neuron σi at time step t, if σi contains
n spikes, such that an ∈ L(E) and c ≤ n. When the rule fires, c spikes are removed
from σi and one spike is sent to each neuron σj , linked through a synapse to σi,
i.e., (i, j) ∈ syn, with delay d. Spikes sent out from the output neuron arrives into
the environment. If d = 0 then the spike is released to all neurons σj at moment t,
otherwise the spike will be released to all σj at time step t + d. In between, i.e., at
times t, · · · , t + d − 1, the neuron σi is closed and during that time it won’t send
and receive spikes. Every spike sent to a closed neuron is lost. At time step t+ d, σi

becomes open again, receiving spikes and sending those not released at time step t. A
forgetting rule, as → λ, can be applied only when the neuron contains exactly s spikes.

A configuration of the SN P system Π at step time h is denoted by Sh = (Sh,1,
· · · , Sh,m), where Sh,j = aj/tj , aj representing the number of spikes in neuron σj

and tj , 1 ≤ j ≤ m, indicating the number of time steps the neuron is closed.
Given two configurations Sh and Sh′ of the SN P system Π, a transition, denoted

Sh =⇒ Sh′ , defines the process of obtaining Sh′ from Sh, where each component Sh′,j ,
1 ≤ j ≤ m, of Sh′ is obtained from Sh,j by applying at most one rule from σj , from
those which are applicable, if any, to Sh,j .

A computation is a sequence of transitions, S0 =⇒ · · · =⇒ St =⇒ St+1 · · · The
initial configuration is S0 = (n1/0, · · · , nm/0). A halting computation ends in an open
configuration where no rule is applicable.

The definition of an extended SN P system is given below [4].

Definition 2 An extended Spiking Neural P system of degree m, m ≥ 1, is a tuple

Π = (O, σ1, · · · , σm, syn, i0),

where, as in Definition 1, O is an alphabet, syn the set of synapses, i0 the output neuron
and σi = (ni, Ri), i ≤ i ≤ m, a neuron with ni, ni ≥ 0, spikes and a finite set of rules, Ri.
The rules have the form E/ac → ap, where E is a regular expression over {a}, c ≥ 1, and
p ≥ 0, are natural numbers and c ≥ p.

A rule of a neuron σi of an extended SN P system is enabled in the same way
with a rule of an SN P system, but it sends p, p ≥ 0, spikes to each of the neurons
σj linked through synapses (i, j) ∈ syn. If the rules in the above definition include a
delay, d, then they are generalizations of spiking and forgetting rules of the standard
SN P systems. When p = 0 a forgetting rule is obtained, where c objects are removed
from the neuron.

The result of a standard (or an extended) SN P system can be defined in various
ways. Below we refer to the generative case, selecting two situations as presented in
[14, 22]. The result is obtained by counting either (i) the number of spikes received by
the output neuron at the end of a halting computation, or sent to the environment
during a halting computation, or (ii) the number of time steps executed by the SN P
system between the first two spikes sent out to the environment by the output neuron.
The type (i) of encoding the result of a halting computation will be considered for all
the SN P systems investigated in the paper, whereas type (ii) will be applied only for
standard and extended SN P systems.

For an SN P system, Π, one denotes by N (Π) all the results produced by Π.

5

In some circumstances SN P systems with one or more input neurons will be
considered. In these cases these input neurons will be fed with spikes from the
environment.

2.2 Kernel P systems

A formal definition of a simple version of kernel P system (kP system) is given below
– more details regarding this model as well as its complete definition are available
from [9].

Any P system consists of a set of membranes (regions) connected in a certain way.
In a kP system each membrane, called compartment, is obtained (instantiated) from
a more general entity, called compartment type. Each compartment type, t, is given
by a finite set of rules, R, and an execution strategy, δ, i.e., t = (R, δ).

The majority of the P systems, including SN P systems, introduced above, execute
the rules using a strategy that is applied in all membranes – a survey of such strategies
of using the rules is presented in [22]. In contrast to this, kP systems allow each
compartment to use a specific way of executing the rules.

T is a set of compartment types, T = {t1, · · · , ts}, where ti = (Ri, δi), 1 ≤ i ≤ s,
consists of a set of rules, Ri, and an execution strategy, δi, defined over Ri.

Given a set of compartment types, T = {t1, · · · , ts}, a kP system is defined below.

Definition 3 A kernel P system of degree n, n ≥ 1, is a tuple

kΠ = (A,µ,C1, · · · , Cn, i0),

where

• A is a finite set of elements called objects;
• µ defines the membrane structure, which is an unoriented graph, (V,L), where V
is a set of vertices representing compartments, V = {C1, · · · , Cn}, and L is a set of
edges connecting compartments, called links L = {{C,C ′}| for some C,C ′ ∈ V };

• Ci = (ti, wi,0), 1 ≤ i ≤ n, is a compartment consisting of a compartment type, ti,
ti ∈ T, and an initial multiset, wi,0, over A; the compartment type ti = (Ri, δi),
consists of a finite set of rules, Ri, and an execution strategy, δi;

• i0 indicates the output compartment where the result is obtained.

The kP system introduced above has one single type of rules, called rewriting and
communication rule. Such a rule has the form x → y(y1, t1) · · · (yh, th) {g}, where
h ≥ 0, x ∈ A+, y ∈ A∗, yi ∈ A+, 1 ≤ i ≤ h, and g represents a guard. Since now on,
this will be called rule. Before presenting the way the rule operates, we describe its
guard.

A guard is defined with relational operators (<,≤,=, ̸=,≥, >) and Boolean oper-
ators (¬ (negation), ∧ (conjunction) and ∨ (disjunction)). A guard is assessed as a
Boolean condition for a given multiset, w, whenever the rule is checked on whether
it is applicable or not to w. For the guards written only with relational operators,
= an, < bm, ≥ cp and a multiset w, the Boolean conditions assessed are |w|a = n,
|w|b < m, |w|c ≥ p, respectively, where |w|x means the number of objects x occurring

6

in w. Hence, the Boolean conditions above are true when the multiset w has exactly n
occurrences of a, less than m objects b, at least p objects c, respectively. More complex
guards can be written using Boolean operators together with relational ones.

Given a compartment C obtained from a type t = (R, δ) and w the current multiset
of C, a rule r : x → y(y1, t1) · · · (yh, th) {g} is applicable to w if w contains the
multiset x and the guard (evaluated as a Boolean condition for w) is true. If the
compartment C is connected with the compartments Cj of type tj and {C,Cj} ∈ L,
then x is removed from w, y is added to it and yj is sent to Cj , 1 ≤ j ≤ h. If more
than one compartment of type tj exists and is linked with C, then one of them is
non-deterministically chosen to receive yj .

For a compartment type t = (R, δ) from T and r1, · · · , rs ∈ R, δ is one of the
following execution strategies

• choice (alternative), denoted {r1, · · · , rs}, with the meaning: one of the rules appli-
cable will be non-deterministically chosen and executed; if none is applicable then
nothing is executed;

• maximal parallelism, denoted {r1, · · · , rs}T , means: the rules will be applied a max-
imal number of times; when the rules are applied an arbitrary number of times,
denoted {r1, · · · , rs}∗, the execution strategy is called arbitrary execution; these
execution strategies have the meaning used for tissue P systems;

• sequential, denoted B1 · · ·Bk, k ≥ 1, where Bj , 1 ≤ j ≤ k, is either a simple rule or
any of the above execution strategies, means: executing B1, · · · , Bk one by one in
sequence, starting with B1 and stopping after Bk or immediately after any of the
Bj which is not executed.

A configuration of the kP system kΠ at time step h is a tuple ch = (ch,1, . . . , ch,n),
where ch,i ∈ A∗ is the multiset from compartment Ci, 1 ≤ i ≤ n. The initial
configuration is c0 = (w1,0, . . . , wn,0).

Given two configurations ch = (ch,1, . . . , ch,n) and ch′ = (ch′,1, . . . , ch′,n) of the kP
system kΠ and a multiset of rules Mi applicable to ch,i from Ci, using δi, 1 ≤ i ≤ n,
as execution strategy, a transition, denoted by ch =⇒(M1,...,Mn) ch′ , is the process of
obtaining ch′ from ch by applying Mi to ch,i, 1 ≤ i ≤ n.

A computation in a kP system is a sequence of transitions c0 =⇒(M0
1 ,...,M

0
n)

, · · · , ct =⇒(Mt
1,...,M

t
n) ct+1 · · · The multisets of rules may be dropped when these are

not necessary. A configuration is called final configuration, if no rule can be applied to
it. A computation ending in a final configuration is called halting computation. The
result of a halting computation is obtained by counting the number of objects appear-
ing in the output compartment of a halting computation. The kP system model do
not use the environment. Similar to the case of SN P systems, for a kP system, kΠ,
one denotes by N (kΠ) all the results produced by kΠ.

The kP system model may use input compartments, similar to input neurons. In
such circumstances the input compartments use only their initial multisets, as there
is no environment to provide inputs.

7

3 SN P systems and kP systems

In this section the following topics are presented: (a) the mapping of several SN P
systems into kP systems, when the former use type (i) of encoding the result, i.e., by
counting the number of spikes received by the output neuron at the end of a halting
computation, or sent to the environment during a halting computation (in Subsection
3.1); and (b) the mapping of standard and extended SN P systems using rules with no
delay and type (ii) of encoding their results, i.e., by counting the number of time steps
executed by the SN P system between the first two spikes sent out to the environment
by the output neuron, into kP systems (in Subsection 3.2). Complexity aspects related
to these mappings will be presented at the end of each of these subsections.

We start by presenting informally some principles of building a kP system derived
from an extended SN P system. As we do not present the way they compute and
get the final results, we consider only SN P systems that do not use an environment.
In the example that will follow immediately afterwards, it will be shown how the
two systems compute the same results. The precise construction of the kP systems
corresponding to various SN P systems, where environment may be considered, will
be provided when formal proofs will be provided.

First, we identify the key structural elements of a basic or extended SN P system,
that are common to all those considered in this paper, and show their corresponding
counterparts in a kP system.

These key elements of an extended SN P system, as presented in Definition 2, but
having no delay attached to rules, are the neurons, their connections, called synapses,
and the rules. These are presented in Table 1 together with their counterparts in a
kP system.

SN P system kP system
Neurons -

Compartments
σi = (ni, Ri)
1 ≤ i ≤ m

ti = (R′
i, δi), 1 ≤ i ≤ m

Ci = (ti, wi,0), wi,0 = ani

Synapses -
Links

(i, j) ∈ syn
1 ≤ i, j ≤ m; i ̸= j

{Ci, Cj} ∈ L
1 ≤ i, j ≤ m; i ̸= j

Rules
r ∈ Ri, 1 ≤ i ≤ m
r : E/ac → ap; c ≥ p > 0, c ≥ 1

r′ ∈ R′
i, 1 ≤ i ≤ m

r′ : ac → (ap, ti1) . . . (a
p, tihi

){gE}

Table 1: SN P system vs kP system structural elements

We observe on the first line of the table that for each neuron σi, 1 ≤ i ≤ m, given
by the initial number of spikes, ni, represented in the system by ani , and a set of rules,
Ri, the corresponding elements in the kP system are a compartment, Ci, obtained
from a type ti, and having as initial multiset wi,0 = ani . Each type is given by a set
of rules R′

i and an execution strategy, δi, which is choice, corresponding to the way
the SN P system executes the rules in each neuron, where only one of the executable
rules is selected to run. As there is no environment for kP system models, when an
SN P system uses the environment, then the corresponding kP system will have one
more compartment – see the proof of Theorem 1.

8

On the second line it is shown that for each synapse between two distinct neurons,
there is a link between the corresponding compartments of the kP system.

The third line of the table describes how the corresponding rules of the kP system
are constructed in each compartment. Each rule r of Ri, 1 ≤ i ≤ m, may be executed
when the current multiset of the neuron satisfies the regular expression E which is
matched by the guard gE of r′ from R′

i. When the regular expression is absent the rule
r may be executed if the current multiset of the neuron is exactly ac; in this case the
guard of r′ becomes = ac. For the rules in Definition 2, one can have p = 0 as well. In
this case the rule r′ becomes ac → λ {gE} or ac → λ {= ac}, depending on whether
r has a regular expression, E, or not. As through the execution of r, the spikes ap,
p ≥ 1, are sent to all neurons, σie , given that (i, ie) ∈ syn, 1 ≤ e ≤ hi, then in the kP
system the rule r′ will send the objects ap to all the compartments corresponding to
the neurons σie . When p = 0, r is a forgetting rule and r′ does not send anything to
other compartments, it only removes ac from Ci.

The example given below, a logical gate, presents a standard SN P system with
no delay, as well as the equivalent kP system, illustrating the principles of building
the kP system mentioned above.

The P systems presented in the next three examples are executed with the following
tools: the SN P systems using P-Lingua (for a presentation see [60], Chapter 2) and the
kP systems using kP-Lingua from kPWorkbench [1]. The computations produced
by these tools are summarized as tables, but also available, as traces of execution,
from the repository [27].

Example 1 Let Π1 = ({a}, σ1, · · · , σ10, syn, 10), be a standard SN P system using rules
with no delay, i.e., d = 0, as shown in Fig. 1. The sets of rules are Ri = {r1,i : a → a},
i = 1, 2, 3, 6, 8; Ri = {r1,i : a → a, r2,i : a

2 → a}, i = 4, 7; Ri = {r1,i : a2 → a, r2,i : a → λ},
i = 5, 9, and R10 = ∅. The result of the computation, the number of spikes, is provided in
the output neuron, σ10. This SN P system describes a logical gate computing the result of
the logical expression ((x ∨ y) ∧ z) ∧ (x ∨ z). The values 1 or 0 for the variables x, y, z, will
be provided in the input neurons σ1, σ2, σ3, respectively, either as initial number of spikes or
entering from the environment. A spike present or entering an input neuron is considered 1
and no spike means 0. The following logical sub-expressions are computed: x∨ y in σ4, x∨ z
in σ7, (x∨ y)∧ z in σ5, and the given logical expression in σ9. The final result, either 1 or 0,
is obtained in σ10. The neurons σ6 and σ8 are meant to synchronize the outputs from various
sub-expressions utilised in the next computation step.

The kP system built from the SN P system Π1, according to the principles mentioned
above and illustrated by Table 1, is presented below.

The kP system kΠ1 = ({a}, µ, C1, · · ·C10, 10), is given by

1. µ = (V,L), and V = {C1, · · ·C10} and L = {{C1, C4}, {C1, C7}, {C2, C4}, {C3, C6},
{C3, C7}, {C4, C5}, {C5, C9}, {C6, C5}, {C7, C8}, {C8, C9}, {C9, C10}};

2. each Ci = (ti, wi,0) is obtained from a compartment type, ti = (R′
i, δi), 1 ≤ i ≤ 10,

with initial multisets w1,0 = x,w2,0 = y, w3,0 = z, where each of the x, y, z is either
a or λ (equivalently, 1 or 0, respectively) and wi,0 = λ, 4 ≤ i ≤ 10. Compartments
C1, C2 and C3 are input compartments with initial multisets mentioned above.
The sets of rules are R′

1 = {r′1,1 : a → (a, t4)(a, t7)}, R′
2 = {r′1,2 : a → (a, t4)},

R′
3 = {r′1,3 : a → (a, t6)(a, t7)}, R′

4 = {r′1,4 : a → (a, t5) {= a}, r′2,4 : a2 → (a, t5)},

9

a → a

a
2
→ a

σ4
σ1

σ2

σ3

a
2
→ a

σ5

x

y

z

a → a

a → a

a → a

a → λ

a → λ

a
2
→ a

σ9

a → a

σ6

σ8

a → a
a → a

a
2
→ a

σ7 σ10

Fig. 1: SNP system with no delay, Π1, for ((x ∨ y) ∧ z) ∧ (x ∨ z)

R′
5 = {r′1,5 : a2 → (a, t9), r

′
2,5 : a → λ {= a}}, R′

6 = {r′1,6 : a → (a, t5)},
R′

7 = {r′1,7 : a → (a, t8) {= a}, r′2,7 : a2 → (a, t8)}, R′
8 = {r′1,8 : a → (a, t9)},

R′
9 = {r′1,9 : a2 → (a, t10), r

′
2,9 : a → λ {= a}}, R′

10 = ∅; each execution strategy,
δi, 1 ≤ i ≤ 9, is choice (alternative) and δ10 = ∅.
Table 2 shows how the SN P system using only rules with no delay presented in Fig. 1

evolves from the start until the result is obtained for the input values x = λ or a, y = z = a.
When the content of a neuron has two values (for instance, a/a2 in σ4), the first value is
obtained for the inputs x = λ, y = z = a and the second for inputs x = y = z = a.

Steps σ1(x) σ2(y) σ3(z) σ4 σ5 σ6 σ7 σ8 σ9 σ10

0 λ/a a a - - - - - - -
1 - - - a/a2 - a a/a2 - - -
2 - - - - a2 - - a - -
3 - - - - - - - - a2 -
4 - - - - - - - - - a

Table 2: SN P system with no delay, Π1, sequence of steps

The table corresponding to kΠ1 is the same as Table 2, with Ci replacing σi, 1 ≤ i ≤ 10.

3.1 Relationships between SN P systems and kP systems

Now, one can prove that any standard SN P system with no delay is mapped into
a kP system having the same outputs; and similarly for an extended SN P system.
Before proceeding with this investigation, a remark is made regarding the relationship
between the regular expressions which appear in the rules of an SN P system and
guards occurring in the rules of the corresponding kP system.

In order to map the SN P system rules into kP system rules, the regular expression
that may be attached with an SN P system rule has to be transformed into a guard

10

of the kP system rule. Some examples of regular expressions and the corresponding
guards are described below.

First, let us consider some finite regular expressions: a, a2 and a2 ∪ a5. The cor-
responding guards are: = a, = a2, and = a2 ∨ = a5, respectively. For the infinite
regular expressions, a+, a3a+ and a2 ∪ a5a∗, the corresponding guards are ≥ a,> a3,
and = a2 ∨ ≥ a5, respectively. However, there are infinite regular expressions, such
as (ak)+, which don’t have corresponding guards, as some arithmetic expressions to
denote multiples of k cannot be expressed with the current guard definition. There
are ways to simulate infinite regular expressions such as (ak)+ within the context of
kP systems with sequences of rules that extract blocks of k symbols from a multiset,
but they increase significantly the complexity of these P systems and the solutions
provided may require adaptations when different mappings are applied. Hence, they
are not considered in the paper. However, with the current guards one can trans-
late the simplified form of infinite regular expressions (i.e., a+) used in the proof of
Turing completeness [13]. There are also variants of SN P systems that do not use
regular expressions, but some other conditions for selecting the rules, such as SN
P systems with weights, potential and threshold [55], or with polarizations [38, 58].
These variants will be presented later in this section.

Remark 1 In the sequel we consider that each of the SN P systems considered uses in its
rules only regular expressions that can be translated into a guard of the corresponding rule
of the kP system.

Now, we focus on standard/extended SN P systems using only rules with
no delay. A sketchy mapping of any standard SN P system, having rules with no
delay, into a kP system is provided in [12]. In the proof of the next theorem the
complete process of constructing a kP system for a given standard/extended SN P
system using rules with no delay is described.

Theorem 1 For any standard or extended SN P system, using only rules with no delay, Πe,
there exists a kP system, kΠe, such that N (Πe) = N (kΠe).

Proof Given that a standard SN P system is a particular case of an extended one, the later
will be considered below.

Let Πe = (O, σ1, . . . , σm, syn, i0) be an extended SN P system, where O = {a}; σi =
(ni, Ri), 1 ≤ i ≤ m, with ni ≥ 0, being the initial number of spikes in the neuron and Ri the
set of rules of the form E/ac → ap, where c ≥ 1 and c ≥ p ≥ 0; syn the set of synapses between
neurons; and io the output neuron. The following kP system, kΠe = (A,µ,C1, · · · , Cn, i0),
described below, is constructed based on the principles illustrated by Table 1.

1. A = O.
2. For each neuron σi, 1 ≤ i ≤ m, of Πe, there is a compartment Ci = (ti, wi,0) in

kΠe obtained from a compartment type ti = (R′
i, δi), as described in Table 1.

If Πe uses the environment for sending spikes from the output neuron, then a
compartment Cm+1 = (tm+1, λ), where tm+1 = (∅, ∅), is added to kΠe. This means

11

that Cm+1 has no rules and no execution strategy is needed. So, n = m + 1 or
n = m, depending on whether the Πe is using or not the environment.

3. µ = (V,L), where V is the set of compartments and L contains all the edges (links).
The set V consists of all the compartments, Ci, 1 ≤ i ≤ n, and L includes a link
{Ci, Cj} ∈ L, if (i, j) or (j, i) is in syn. When the environment is used by Πe, then
a new link {Ci0 , Cm+1} is added to L.

(a) Let rj,i : Ej,i/a
cj,i → apj,i ∈ Ri, 1 ≤ j ≤ ki, be a rule of the neuron σi,

1 ≤ i ≤ m, i ̸= i0, connected with σie , 1 ≤ e ≤ hi, hi ≥ 1 (i.e., (i, ie) ∈ syn).
If pj,i ≥ 1, then a rule r′j,i : acj,i → (apj,i , ti1) · · · (apj,i , tihi

) {gEj,i} is added
to R′

i, the set of rules of type ti, where gEj,i is the guard obtained from the
regular expression Ej,i. If pj,i = 0, i.e., rj,i is a forgetting rule, then a rule
acj,i → λ {gEj,i} is added to R′

i. In the case of the output neuron, σi0 , similar
to the other neurons, for each rule rj,i0 : Ej,i0/a

cj,i0 → apj,i0 ∈ Ri0 , 1 ≤ j ≤ ki0 ,
pj,i0 > 0, in the compartment type ti0 a rule r′j,i0 is added to R′

i0
if Πe does not

use the environment. Otherwise, to the right hand side of r′i0,j above it is added
(apj,i0 , tm+1), which means that apj,i0 is sent to Cm+1. When pj,i0 = 0 then the
right hand side of r′j,i0 is λ.

(b) The execution strategy δi is choice.
(c) wi,0 = ani , 1 ≤ i ≤ m.

4. The output compartment of the kP system is Ci0 .

One can show by induction that S0 =⇒ S1 =⇒ · · · =⇒ St is a halting computation in Πe,
iff c0 =⇒ c1 =⇒ · · · =⇒ ct is a halting computation in kΠe, with Sh = (Sh,1, · · · , Sh,m, Sh,E)
(Sh,E appears only when the environment is used to get the result) and ch = (wh,1, · · · , wh,n)
(n = m, when the environment is not used by Πe and n = m + 1, otherwise), such that
aSh,i = wh,i, 1 ≤ i ≤ m, aSh,E = wh,m+1, 0 ≤ h ≤ t.

When the environment is not used, then Sh,E and wh,m+1, 0 ≤ h ≤ t, are dropped.

We have that aS0,i = w0,i, 1 ≤ i ≤ m, aS0,E = w0,m+1.
If for any h < t, Sh and ch satisfying the above relationship, i.e., ch =

(aSh,1 , · · · , aSh,m , aSh,E), then we show that ch+1 = (aSh+1,1 , · · · , aSh+1,m , aSh+1,E).
(i) First, we show that if Sh = (Sh,1, · · · , Sh,m, Sh,E) =⇒ Sh+1 =

(Sh+1,1, · · · , Sh+1,m, Sh+1,E), then ch+1 = (aSh+1,1 , · · · , aSh+1,m , aSh+1,E). Indeed, in Sh

for any 1 ≤ i ≤ m there is at most one rule rj,i ∈ Ri, 1 ≤ j ≤ ki. In ch the rules
r′j,i ∈ R′

i, 1 ≤ i ≤ m, 1 ≤ j ≤ ki, are used in the next computation step in kΠe. Accord-

ing to the definition of kΠe the rules r′j,i and their corresponding rules rj,i in Πe are
applied in the same circumstances (guards gEj,i

and regular expressions Ej,i are satisfied
for the same conditions), consume the same inputs and produce the same outputs. Hence,
ch+1 = (aSh+1,1 , · · · , aSh+1,m , aSh+1,E).

(ii) The other part of the equivalence is similar.
It follows that Πe and kΠe produce the same results and N (Πe) = N (kΠe). □

In the sequel different variants of SN P systems are considered together with their
mapping into kP systems. In each of these cases the focus will be on the new features
introduced or changes made to standard or extended SN P systems and the ways
these are reflected in the kP systems associated with them.

SN P systems with colored spikes [52] use a set of different types of spikes.
Applications of this model have been studied in [33]. Formally, this is given by

12

Πe,c = (O, σ1, . . . , σm, syn, i0), where the alphabet consists of colored spikes, O =
{a1, · · · , ag}, where g ≥ 1, is the number of colors. For any neuron σi, 1 ≤ i ≤ m, the
rules of Ri have the form r : E/ac11 · · · acgg → ap1

1 · · · apg
g , where E is a regular expres-

sion over O, cj ≥ pj ≥ 0 and cj ≥ 1, 1 ≤ j ≤ g. The result produced by Πe,c is the set
of tuples (x1, · · · , xg), where xj is the number of spikes of color 1 ≤ j ≤ g, counted in
the output neuron at the end of a halting computation or in the environment during
a halting computation.

Corollary 2 For any SN P system with colored spikes, Πe,c, there exists a kP system, kΠe,c,
such that N (Πe,c) = N (kΠe,c).

Proof Similar to the proof of Theorem 1, for a given SN P system with colored spikes, Πe,c,
one constructs a kP system, kΠe,c. For any rule r ∈ Ri, 1 ≤ i ≤ m, as above, a rule
r′ : ac11 · · · acgg → (ap1

1 · · · apg
g , ti1) · · · (a

p1

1 · · · apg
g , tihi

) {gE} is added to the set of rules R′
i.

The proof of equivalence of the two P systems is similar to the proof of Theorem 1.
□

SN P systems with multiple channels [46] use channels associated with
synapses which distinguish certain synapses that are used for passing spikes between
neurons; the rules of such P systems refer to channels instead of synapses. Each chan-
nel is described by a label from L, L ⊂ N, i.e., (i, j, l), where (i, j) is a synapse linking
the neurons σi and σj and l is the label of the channel associated to the synapse. The
rules have the form r : E/ac → ap(l), c ≥ p ≥ 0, c ≥ 1, l ∈ L. This means that when
such a rule is applied in neuron σi the p spikes are sent to the neighbouring neurons
connected with synapses of the same label, l, instead of all the neurons connected
through synapses.

Corollary 3 For any SN P system with multiple channels, Πe,mc, there exists a kP system,
kΠe,mc, such that N (Πe,mc) = N (kΠe,mc).

Proof The proof is almost identical with the proof of Teorem 1. The only difference consists
in defining the rules: for each rule r in σi there exists a rule r′ in the set of rules R′

i of
the compartment type ti which sends ap objects only to the compartments corresponding to
neighboring neurons linked with σi through channel l. □

An SN P system with anti-spikes, introduced in [28], has the following new
features that do not exist in standard or extended SN P systems: (i) an alphabet
consisting of two objects, a and ā, called spikes and anti-spikes, respectively and (ii)
rules of the form E/bc → b′ or E/bc → λ, where each of b and b′ are either a or ā.
When both a and ā appear in a neuron, after receiving them from other neurons, a
rule aā → λ is immediately applied in a maximal parallel manner, before any other

13

rule is used, such that if one gets ae and ād then either ae−d or ād−e, depending on
whether e ≥ d or d ≥ e, respectively, is obtained. This acts as an annihilation rule
removing all pairs a, ā. When the environment is used for getting the results, then the
output neuron sends only spikes and no anti-spikes. One can observe that the rules
of these SN P systems are similar to those of the standard SN P systems using rules
with no delay.

Theorem 4 For any SN P system with anti-spikes, Πaā, there exists a kP system, kΠaā,
such that N (Πaā) = N (kΠaā).

Proof This proof will show how the two new features of SN P systems with anti-spikes are
considered in their mapping into kP systems.

Let us consider an SN P system with anti-spikes, Πaā = (O, σ1, . . . , σm, syn, i0), where
O = {a, ā}; σi = (ni, Ri), 1 ≤ i ≤ m, with ni ≥ 0, the initial number of spikes in the
neuron, and Ri is the set of rules of type E/bc → b′ or E/bc → λ, where b, b′ ∈ O; syn
the set of synapses between neurons and i0, the output neuron. We construct a kP system
kΠaā = (A,µ,C1, · · · , Cn, i0), similar to the proof of Theorem 1. The rules of kΠaā are
slightly different in this case: for every rule r : E/bc → b′ ∈ Ri, where b, b′ ∈ {a, ā}, a rule
r′ : bc → (b′, ti1) . . . (b

′, tihi
) {gE} is added to R′

i and when r : E/bc → λ is in Ri, then a

rule r′ : bc → λ {gE} is added to R′
i. Every set of rules R′

i, 1 ≤ i ≤ m, of Ci contains an
additional rule, which is re : aā → λ, hence, the number of rules of R′

i is the number of rules
of Ri plus one. The compartment Ci is constructed from the compartment type ti with the
execution strategy δi = {re}T {r′1, . . . , r′ki

}, where ki ≥ 1, is the number of rules in Ri. The
execution strategy is a sequence with two blocks, the first one is a maximal parallel execution
of re and the second one is a choice from the set of rules associated to those in Ri.

One can easily observe that in any computation in kΠaā, in each step, apart from the
first one, the first block of the execution strategy is equivalent to an annihilation rule and for
the remaining objects a or ā, one of r′j , 1 ≤ j ≤ ki, is selected to be executed. At the end of
each step the components may contain both a and ā and the annihilation is done in the next
step. For this reason, if the result produced by Πaā is obtained in the environment, then in
the compartment Cm+1 of kΠaā there is no need for annihilation, as only objects a are sent
to Cm+1. Otherwise, an additional step may be required for computing the result of kΠaā.
Hence, if the number of steps of a halting computation of Πaā is t then the corresponding
halting computation of kΠaā may require t+ 1 steps.

In order to show that the two P systems produce the same results one can use the
approach presented in the proof of Theorem 1. Consequently, N (Πaā) = N (kΠaā).

□

Now, the case of SN P systems using rules with delay is considered. Similar
to Theorem 1, the rules of these systems will be of the extended type, but will include
a delay as well.

Theorem 5 For any standard or extended SN P system using rules with delay, Πe,d, there
exists a kP system, kΠe,d, such that either N (kΠe,d) = N (Πe,d) or N (kΠe,d) = N (Πe,d)+3.

14

Proof Let Πe,d = (O, σ1, . . . , σm, syn, i0) be an SN P system, where O = {a} is the alphabet;
σi = (ni, Ri), 1 ≤ i ≤ m, is a neuron consisting of an initial number of spikes, ni ≥ 0, and
a set of rules, Ri, of the form E/ac → ap; d, where d ≥ 0; syn is the set of synapses; and
i0 indicates the output neuron. If the set Ri, 1 ≤ i ≤ m, has rules with delay and the total
number of rules is ki, ki ≥ 1, then the rules can be reordered such that the first rules are
with no delay, rj,i : Ej,i/a

cj,i → apj,i , 1 ≤ j ≤ li < ki, li ≥ 0, and the rest are with delay,
rj,i : Ej,i/a

cj,i → apj,i ; dj,i, li + 1 ≤ j ≤ ki. Let us denote by min the minimum of all li
and Max the maximum of all ki, 1 ≤ i ≤ m. RD, RD = Max−min, denotes the maximum
number of rules with delay that may appear in any of the neurons.

The following kP system, kΠe,d = (A,µ,C1, · · · , Cn, i0), is constructed, where

1. A = {a, b, f, o, c} ∪ {aj | min + 1 ≤ j ≤ Max} ∪ {νj | min + 1 ≤ j ≤ Max} is the
alphabet.

2. n, µ and i0 are as in Theorem 1.
3. The compartment type is ti = (R′

i, δi) and wi,0 = ani if Ri contains only rules with
no delay and wi,0 = anif2o if Ri contains rules with delay. The two additional
symbols, f and o, are used to handle the simulation of the delay. If Ri contains
only rules with no delay, then R′

i is built as in Theorem 1.
4. If Ri contains rules with delay and pj,i ≥ 1, then the set R′

i has the following rules
r′j,i : a

cj,i → (apj,i , ti1) · · · (apj,i , tihi
) {gEj,i ∧ = o}, 1 ≤ j ≤ li, li ≥ 0 (correspond-

ing to the rules with no delay, rj,i, from σi); and, for the rules with delay, rj,i,
li + 1 ≤ j ≤ ki, from σi,

r′j,i,1 : ofacj,i → cνja
dj,i

j {gEj,i ∧ = o}, li + 1 ≤ j ≤ ki;
r′j,i,2 : cνj → fo(apj,i , ti1) · · · (apj,i , tihi

) {= aj}, li + 1 ≤ j ≤ ki;
r′j,i,3 : aj → λ {≥ aj}, li + 1 ≤ j ≤ ki; and
r′ki+1,i : a → λ {(≥ ali+1 ∨ · · · ∨ ≥ aki)};
r′ki+2,i : b → a {(= ali+1 ∨ · · · ∨ = aki)};
r′ki+3,i : a → b {= f}.
The case pj,i = 0, corresponding to a forgetting rule in Πe,d, is handled similar to
Theorem 1 and is left as an exercise.

The case when the output neuron σi0 has no rules with delay is handled as
in Theorem 1. If σi0 includes rules with delay, then the rules r′j,i0 , 1 ≤ j ≤ li0 ,
corresponding to rules with no delay in σi0 , are treated as in Theorem 1, whereas
for each of the rules r′j,i0 , li0 + 1 ≤ j ≤ ki0 , corresponding to rules with delay in
σi0 , the following changes are made: (apj,i0 , tm+1) is added to the right hand side
of r′j,i0,2, which means that when σi0 will become open, the compartment Ci0 sends
apj,i0 to Cm+1.

5. The execution strategy, δi, 1 ≤ i ≤ m, is the sequence B1B2B3B4, where
B1 = {r′1,i, · · · , r′li,i} ∪ {r′i,j,h|li + 1 ≤ j ≤ ki, 1 ≤ h ≤ 2};
B2 = {r′ki+1,i, r

′
ki+2,i}T ; B3 = {r′j,i,3}; and B4 = {r′ki+3,i}T .

B1 and B3 denote choice strategies, i.e., only one of the applicable rules from
the sets defining the blocks is selected and executed. B2 and B4 blocks describe
maximal parallel executions of the rules.

Subsequently, the kP system kΠe,d work is described.

15

In the compartments corresponding to neurons that do not contain rules with delay the
rules are executed according to the choice execution strategy, as described in the proof of
Theorem 1.

Now, we consider compartments Ci, 1 ≤ i ≤ m, containing rules with delay and denote
this case with (*). In each such compartment, when o is present, i.e, it corresponds to σi
being open, a rule is applicable if its left hand side is contained in the current multiset of
Ci and its guard is true. This happens in two cases, when: (i) the rule is r′j,i, 1 ≤ j ≤ li,

or (ii) r′j,i,1, li + 1 ≤ j ≤ ki; both are from B1. If r
′
j,i, 1 ≤ j ≤ li, is applied, then none of

the rules from other blocks is applicable, due to their guards. Consequently, the execution
of the corresponding rule, rj,i, from Ri, with no delay, is simulated. If r′j,i,1, li + 1 ≤ j ≤ ki
is applied, then it starts simulating the behaviour of the rule rj,i, with delay, from Ri. The

rule r′j,i,1 consumes objects o, f and acj,i , producing c, νj and a
dj,i

j objects. The rule r′j,i,1
simulates the first part of executing rj,i, when the status of the neuron σi becomes closed
(in Ci the object o is replaced by c and acj,i , which represents the left hand side of rj,i, is
consumed). The dj,i objects aj correspond to the delay dj,i introduced by rj,i. After applying
the rule, only one single f remains in Ci. Then, from the rules of the blocks B2 to B4, only
r′ki+3,i is executed in maximal parallel way, by transforming all the remaining objects a, if
any, into objects b. Now, σi being closed, it won’t send or receive any symbols for dj,i − 1
steps. During that time, in Ci, the block B1 is no longer executed, due to the guards of the

rules being false. As long as dj,i ≥ 1, equivalent to the number of objects a
dj,i

j being greater
than or equal to 1, the only executable rules are those occurring in blocks B2 and B3. The
rule r′ki+1,i from B2, executed in maximal parallel manner, erases all the objects a that may
have come from the compartments corresponding to neurons that send spikes to σi which is
closed. The rule r′j,i,3 from block B3 decreases the number of aj by one. The final block, B4,
is no longer executed as all the objects a have been consumed in block B2. In the final step,
when there is only one object aj , the rules that are executed are r′j,i,2, from B1, and those

from blocks B2 and B3. The rule r′j,i,2 delivers apj,i objects to the linked compartments
corresponding to the neighbours of σi, restoring the two objects f and introducing an object
o corresponding to open status of σi. The rules r′ki+1,i and r′ki+2,i, applied in a maximal
parallel way, remove objects a previously received and restore the objects a that remained in
Ci after applying r′j,i,1, respectively. Finally, r

′
j,i,3 removes the latest aj . In this final step,

r′ki+1,i is not applicable as there ar no available objects a.
Let Nnd = {i|σi, 1 ≤ i ≤ m, has only rules with no delay}. If Πe,d uses the environment

then Nnd = Nnd ∪ {m+ 1}.
One can show, following Theorem 1 proof, that S0 =⇒ S1 =⇒ · · · =⇒ St is a halting

computation in Πe,d, iff c0 =⇒ c1 =⇒ · · · =⇒ ct, is a halting computation in kΠe,d, with

ch,i = aSh,i , when i ∈ Nnd,

ch,i = f2oaSh,i , when i /∈ Nnd and σi at step h is open,

ch,i includes the objects cfa
dj,i

j , when i /∈ Nnd and σi at step h is closed for dj,i steps; and
1 ≤ h < t.

From the case (*), it results that when σi is closed for dj,i steps, then ch+dj,i,i =

f2oa
Sh+dj,i,i and σi is open at step h+ dj,i.
The results produced by the kΠe,d are the same with the results produced by Πe,d, when

the output neuron does not include rules with delay or when the results are obtained in the
environment. Otherwise, if in the output neuron of Πe,d the result is the multiset M , then

the result in the output compartment of kΠe,d is Mf2o. Consequently, N (kΠe,d) = N (Πe,d),
in the first case, and N (kΠe,d) = N (Πe,d) + 3, in the second case.

□

16

Example 2 A solution using SN P systems with delay to the logical gate introduced in Exam-
ple 1 is presented in Fig 2. A rule with delay 1 appears in neuron σ3. When the rule will
spike an a, after a delay equal to 1, this is sent to σ5 and σ7. Other changes made to the SN
P system presented in the Example 1 are the following: neuron σ6 is now connected to σ1
((1, 6) ∈ syn) and σ7 ((6, 7) ∈ syn), and the neuron σ8 is no longer used.

a → a

a
2
→ a

σ4
σ1

σ2

σ3

a
2
→ a

σ5

x

y

z

a → a

a → a

a → a; 1

a → λ

a → λ

a
2
→ a

σ9

a → a

σ6

σ7

a → a

a
2
→ a

σ10

Fig. 2: SNP system with delay, Π1,d, for ((x ∨ y) ∧ z) ∧ (x ∨ z)

Table 3 shows how the SN P system with delay, Π1,d, presented in Fig. 2, evolves from
the start until the result is obtained for the input values x = λ/a, y = z = a.

Steps σ1(x) σ2(y) σ3(z) σ4 σ5 σ6 σ7 σ9 σ10

0 λ/a a a - - - - - -
1 - - - a/a2 - λ/a - - -
2 - - - - a2 - a/a2 - -
3 - - - - - - - a2 -
4 - - - - - - - - a

Table 3: SN P system with delay, Π1,d, sequence of steps

The kP system kΠ1,d = ({a, b, f, o, c, a1, ν1}, µ, C1, · · ·C7, C9, C10, 10), built according to
Theorem 5 is given by

µ = ({C1, · · ·C7, C9, C10}, V), and V = {{C1, C4}, {C1, C6}, {C2, C4}, {C3, C5},
{C3, C7}, {C4, C5}, {C5, C9}, {C6, C7}, {C7, C9}, {C9, C10}}; where each Ci = (ti, wi,0) is
obtained from a compartment type, ti = (R′

i, δi), 1 ≤ i ≤ 10, i ̸= 8. The initial mul-
tisets w1,0 = x,w2,0 = y, w3,0 = zf2o, where each of the x, y, z is either a or λ, and
wi,0 = λ, 4 ≤ i ≤ 10, i ̸= 8. The sets of rules are: R′

1 = {r′1,1 : a → (a, t4)(a, t6)},
R′
2 = {r′1,2 : a → (a, t4)}, R′

4 = {r′1,4 : a → (a, t5) {= a}, r′2,4 : a2 → (a, t5)},
R′
5 = {r′1,5 : a2 → (a, t9), r

′
2,5 : a → λ {= a}}, R′

6 = {r′1,6 : a → (a, t7)}, R′
7 = {r′1,7 : a →

(a, t9) {= a}, r′2,7 : a2 → (a, t9)}, R′
9 = {r′1,9 : a2 → (a, t10), r

′
2,9 : a → λ {= a}}, R′

10 = ∅.
Each execution strategy, δi, 1 ≤ i ≤ 9, i ̸= 3, 8, is choice and δ10 = ∅.

17

R′
3 includes the following rules

r′1,3,1 : ofa → cν1a1 {= o},
r′1,3,2 : cν1 → fo(a, t5)(a, t7) {= a1},
r′1,3,3 : a1 → λ {≥ a1}},
r′2,3 : a → λ {≥ a1}},
r′3,3 : b → a {= a1}},
r′4,3 : a → b {= f}}.
One defines the following blocks: B1 = {r′1,3,1, r′i,3,2}, B2 = {r′2,3, r′3,3}T , B3 = {r′1,3,3} and

B4 = {r′4,3}T .
The execution strategy is the sequence δ3 = B1B2B3B4. Table 4 shows how the SN P

system with delay, kΠ1,d, works. One can notice that f2o is included in C3 as additional
objects and they remain in this neuron up until the end of the computation. In C3 the rule
r′1,3,1 is applied to simulate the rule r1,3 in σ3; this rule consumes an object a and introduces
cfν1a1, showing that the compartment simulates the state close of σ3 for one step. The
object a is released to C5 and C7 in the third step, whereas the contents of C2 become f2o.
In the other compartments there are only rules with no delay and kΠ1,d behaves in these
compartments similar to kΠ1. The two P systems produce the same results.

Steps C1(x) C2(y) C3(z) C4 C5 C6 C7 C9 C10

0 λ/a a af2o - - - - - -
1 - - cfν1a1 a/a2 - λ/a - - -
2 - - f2o - a2 - a/a2 - -
3 - - f2o - - - - a2 -
4 - - f2o - - - - - a

Table 4: kP system with delay, kΠ1,d, sequence of steps

SN P systems with weights on synapses [32] use extended rules with delay,
adding a new feature, positive integers, as weights, on synapses. For such an extended
SN P system, one can write syn ⊆ {1, . . . ,m}×{1, . . . ,m}×N. For a synapse (i, j, w),
i ̸= j, if p spikes are emitted by σi, then p× w spikes are received by σj .

Corollary 6 For any SN P system with weights on synapses, Πw, there exists a kP system,
kΠw, such that either N (kΠw) = N (Πw) or N (kΠw) = N (Πw) + 3.

Proof The kP system kΠw is obtained from the proof of Theorem 5, by adding the
contribution of the weights to the right hand sides of r′j,i and r′j,i,2.

The rules of the compartment type ti, 1 ≤ i ≤ m have the following forms, when pj,i > 0,

1 ≤ j ≤ ki, : r
′
j,i : a

cj,i → (apj,i×w1 , ti1) · · · (a
pj,i×whi , tihi

) {gEj,i
∧ = o}, where 1 ≤ j ≤ li,

li ≥ 0 and r′j,i,2 : cνj → fo(apj,i×w1 , ti1) · · · (a
pj,i×whi , tihi

) {= aj}. The case pj,i = 0,
1 ≤ j ≤ ki, can be easily handled from the proof of Theorem 5. □

18

A slightly different variant of SN P systems with weights is introduced in [55],
where the concept of SN P systems with weights, potential and threshold are
used. Rules with delay are not used for this model. The potential and threshold are
computable real numbers (from the set Rc). In such an SN P system of degree m, for
each neuron, σi, 1 ≤ i ≤ m, there is an initial potential, pi ∈ Rc, and a threshold,
Ti, Ti ≥ 1, attached to it. The neuron contains spiking rules of the form Ti/qj,i → 1,
1 ≤ j ≤ ki, for some ki ≥ 1 and qj,i ∈ Rc, such that 0 < qj,i ≤ Ti. The threshold
act as a guard of the rule, replacing the usual regular expression, and the potential
appears instead of a spike. Similar to SN P systems with weights introduced in [32]
and discussed above, every synapse has a weight, but now from a different set. The
form of a synapse is (i, j, w), where i, j ∈ {1, . . . ,m}, i ̸= j, and w ∈ Rc is the
weight of the synapse. Given that at a moment, the potential of the neuron σi is
p ∈ Rc, a spiking rule is executed as follows. If p = Ti then any rule belonging to
the neuron σi, Ti/qj,i → 1, can be applied, decreasing the potential of σi by qj,i and
sending a potential 1 to each of the neurons σj such that (i, j, w) ∈ syn. Neuron σj

receives the potential w, which can be either positive or negative. One can note that a
negative weight, w, acts similarly to an inhibitory synapse [28] that transforms spikes
into anti-spikes (1, a positive potential, will arrive as w, a negative potential, in σj).
When p < Ti the potential will become 0, i.e., potential p will be removed from σi. If
p > Ti then no change of potential occurs in σi. In the proofs provided in [55], Turing
completeness is obtained when Z is utilised instead of Rc. The theorem below refers
to weights in Z.

Theorem 7 For any SN P system with weights, potential and threshold, Πw,p,t, there exists
a kP system, kΠw,p,t, such that N (Πw,p,t) = N (kΠw,p,t).

Proof Let us consider an SN P system with weights, potential and threshold, Πw,p,t =
(σ1, . . . , σm, syn, i0), where σi = (pi, Ri), 1 ≤ i ≤ m, with pi the initial potential of the
neuron, and Ri the set of rules of the form Ti/qj,i → 1, 1 ≤ j ≤ ki, such that 0 < qj,i ≤
Ti. Similar to the proof of Theorem 1, a kP system, kΠw,p,t = (A,µ,C1, · · · , Cn, i0), is
constructed. In this case we take A = {a, ā} (here a and ā play the roles of the objects used
in the mapping of SN P systems with anti-spikes into kP systems).

The set of rules R′
i includes:

• r′j,i : a
qj,i → (bw1 , ti1) · · · (bwhi , tihi

) {= aTi}, where b = a, when we > 0 and b = ā,
when −we < 0, 1 ≤ e ≤ hi, corresponding to rj,i : Ti/qj,i → 1, 1 ≤ j ≤ ki;

• ra,ā : aā → λ {≥ a ∧ ≥ ā}, to simulate in Ci the difference between positive and
negative potentials, when both appear in σi;

• ra : a → λ {< aTi}, corresponding to the case when the potential in σi is less than
Ti; this will become 0;

• rā : ā → λ, when a potential is negative then is always made 0.

The execution strategy is a sequence δi = {ra,ā}T {ra, rā}T {r′1,i, · · · , r
′
ki,i

}. If there are both
positive and negative potentials, the difference of the two is made (first block executed in
maximal parallel manner) and either the potential is less than Ti (second block of rules) or
equal to Ti (last one, selecting arbitrarily one of the ki rules) is executed.

19

Similar to the proof of Theorem 4, one can show that the results produced by the two
P systems are the same and for any halting computation of Πw,p,t of t time steps the
corresponding halting computation of kΠw,p,t has t or t+ 1 steps. □

SN P systems with polarizations [38, 58] represent a variant of SN P systems
whereby regular expressions are replaced by electrical charges, +,−, 0. Each neuron
of the system has a specific electrical charge. The rules have the form α|ac → ap;β,
where α, β ∈ {+,−, 0}, c ≥ 1 and 0 ≤ p ≤ 1. A rule is applicable when the number
of spikes of the neuron σi, is greater than or equal to c and the electrical charge of
the rule coincides with the electrical charge of the neuron. If the rule is applied, then
c spikes are consumed from the neuron and a and β, when p = 1, or only β, when
p = 0, are sent to all neighbouring neurons, σj , (i, j) ∈ syn. After electrical charges
are received by a neuron, its current electrical charge plus those received follow the
calculation: (i) several +′s, several 0′s and several −′s produce one +, one 0 and one
−, respectively; (ii) + and − lead to 0; (iii) + or − is not changed by 0.

Theorem 8 For any SN P system with polarizations, Πp, there exists a kP system, kΠp,
such that either N (kΠp) = N (Πp) or N (kΠp) = N (Πp) + 3.

Proof Let us consider an SN P system with polarizations, Πp = (O, σ1, . . . , σm, syn, i0),
where O = {a}, σi = (ni, Ri), 1 ≤ i ≤ m, with ni ≥ 0, the initial number of spikes in the
neuron, and Ri the set of rules α|ac → ap;β, where α, β ∈ {+,−, 0}, c ≥ 1 and 0 ≤ p ≤ 1. The
initial electrical charge of σi, 1 ≤ i ≤ m, is αi. syn is the set of synapses between neurons and
i0, indicates the output neuron. Let us consider the kP system kΠp = (A,µ,C1, · · · , Cn, i0).
A = {a,+,−, 0, f} is the alphabet. As in the previous cases, n = m or n = m+ 1. For each
neuron σi, 1 ≤ i ≤ m, with initial electrical charge αi, a compartment Ci = (ti, wi,0) of type

ti = (Ri, δi) is constructed, with the initial multiset wi,0 = anif2αi, where ani corresponds
to the initial number of spikes of σi, αi is the electrical charge of the neuron σi and f,
occurring with multiplicity 2, is a flag used in computing the electrical charge from a multiset
of electrical charges. For each set of rules Ri, with rules rj,i, 1 ≤ j ≤ ki, one creates the
set of rules R′

i. Before presenting the rules of R′
i, the following disjoint guards are defined

g0 = (≥ 0 ∧ ≥ + ∧ ≥ −) ∨ (< 0 ∧ ≥ + ∧ ≥ −) ∨ (≥ 0 ∧ < + ∧ < −);
g+ = (≥ 0 ∧ ≥ + ∧ < −) ∨ (< 0 ∧ ≥ + ∧ < −);
g− = (≥ 0 ∧ ≥ − ∧ < +) ∨ (< 0 ∧ ≥ − ∧ < +).
A guard gx, x ∈ {+,−, 0}, is true when the calculation based on steps (i) - (iii), given
before Theorem 8, is applied to the multiset over {+,−, 0} from the current multiset of the
compartment Ci and leads to x. For example, in the case of g0 there are three possibilities
when the occurrences of +,−, 0 from Ci lead to 0: (a) at least one of +,−, 0; (b) at least one
of +,− and no 0; and (c) at least one 0 and no +,−. For (a), applying first (i) then (ii) one
gets two objects 0 and using again (i) yields 0. For (b), one + and one − are obtained by
applying (i) and then one 0 is produced using (ii). Situation (c) requires only step (i) which
leads to one 0.

The set of rules R′
i, 1 ≤ i ≤ m, consists of the rules defined below.

• for every rule
rj,i : αj,i|acj,i → y;βj,i ∈ Ri, 1 ≤ j ≤ ki, where y = a or y = λ, R′

i contains
r′j,i : a

cj,i → (yβj,i, ti1), · · · , (yβj,i, tihi
) {gαj,i}, where y = a or y = λ;

20

• r′x : f → x {gx}, x ∈ {+,−, 0};
• r′x,e : x → λ {= f}, x ∈ {+,−, 0};
• r′f : f → f2 {= f}.

The execution strategy δi = B1B2B3, is a sequence, where B1 = {r′1,i, · · · , r
′
ki,i

}, B2 =

{r′+, r′−, r′0}, B3 = {r′+,e, r
′
−,e, r

′
0,e, r

′
f}

T . B1 is a choice, executing at most one of the rules

r′j,i, 1 ≤ j ≤ ki, with the guard gαj,i being true (σi and rj,i have the same electrical charge,
αj,i). B2 is also a choice, producing in Ci the object x when gx is true. This corresponds
to the electrical charge of σi based on the calculation steps mentioned above. Finally, all
remaining objects, if any, corresponding to electrical charges are removed and the two objects
f are restored, by executing the rules indicated by B3 in a maximal parallel manner. It results
that the object corresponding in a compartment Ci to the electrical charge of σi, 1 ≤ i ≤ m,
is obtained in the next step.

When the environment is used by the SN P system, an additional compartment is needed
in kΠp. The environment is used by Πp only to collect the result, having no electrical charge.
The corresponding compartment in kΠp may be defined as for the other kP systems, Cm+1 =
(tm+1, λ), where tm+1 = (∅, ∅). Also, a link {Ci0 , Cm+1} is added to kΠp and the rule r′j,i0
has on its right hand side only y instead of yβj,i0 , which means that no electrical charge
object is sent to Cm+1.

As in the proofs of the previous theorems, one can show that S0 =⇒ S1 · · · =⇒ St is a
halting computation in Πp, iff c0 =⇒ c1 =⇒ · · · =⇒ ct′ is a halting computation in kΠp, with
Sh = (Sh,1, · · · , Sh,m), ch = (ch,1, · · · , ch,m) and ch,i = Sh,if

2Mi, 1 ≤ h ≤ t, 1 ≤ i ≤ m,
where Mi is a multiset over {+,−, 0}; when n = m+ 1, ch,m+1 = Sh,m+1, 1 ≤ h ≤ t.

One can notice that if Πp uses the environment and produces s spikes, then and kΠp

produces the result as and t′ = t. Otherwise, if Πp produces the number of spikes s in the
output neuron αi0 , then kΠp produces in Ci0 the result asf2αi0 and t′ = t + 1. Hence,
N (kΠp) = N (Πp) or N (kΠp) = N (Πp) + 3.

□

Remark 2 If two rules from R′
i are identical, but the guards are different,

r′j1,i : a
c → (yβ, ti1), · · · , (yβ, tihi

) {gαj1,i}, and
r′j2,i : a

c → (yβ, ti1), · · · , (yβ, tihi
) {gαj2,i}, where gαj2,i ̸= gαj1,i , y = a or y = λ, then they

can be replaced by a single rule with a guard being the disjunction of those that appear in
the rules,
r′j1,i : ac → (yβ, ti1), · · · , (yβ, tihi

) {gαj1,i ∨ gαj2,i}. One can apply the same process for
three rules as well, where the disjunction of three conditions is used. No more than three
such rules may appear as this is the maximum number of potential polarizations.

Example 3 In Figure 3 is presented a solution to the logical gate. This is formally given by:
Π1,p = ({a}, σ1, · · · , σ10, syn, 10), where the sets of rules are R1 = {r1,1 : +|a → a; +},
R2 = {r1,2 : −|a → a;−}, R3 = {r1,3 : −|a → a;−}, R4 = {r1,4 : +|a → a; +, r2,4 :

−|a → a; +, r3,4 : 0|a2 → a; +}, R5 = {r1,5 : +|a → a; +}, R6 = {r1,6 : −|a → a;−},
R7 = {r1,7 : +|a → λ; 0, r2,7 : −|a → λ; 0, r3,7 : 0|a2 → a; +}, R8 = {r1,8 : +|a → a;−, r2,8 :

−|a → a;−, r3,8 : 0|a2 → a;−}, R9 = {r1,9 : +|a → λ; 0, r2,9 : −|a → λ; 0, r3,9 : 0|a2 → a; 0},
R10 = ∅.

21

0|a2
→a;+

0,σ4
+,σ1

−,σ2

−,σ3

0,σ7

x

y

z

+|a→a;+

−|a→a;−

−|a→a;−

0,σ9

+|a→a;+

+,σ5

0,σ8

−|a→a;−

−,σ6

+|a→a;+

−|a→a;+

+|a→λ;0

−|a→λ;0

0|a2
→a;+

0|a2
→a;−

+|a→a;−

−|a→a;−

+|a→λ;0

−|a→λ;0

0|a2
→a;0

σ10

Fig. 3: SNP system with polarizations, Π1,p, for ((x ∨ y) ∧ z) ∧ (x ∨ z)

The Table 5 presents how this SN P system evolves. For each step one line is for the
polarizations of the neurons and the second contains their contents, when the inputs x = λ/a,
y = x = a are used.

Steps σ1(x) σ2(y) σ3(z) σ4 σ5 σ6 σ7 σ8 σ9 σ10

0 + − − 0 + − 0 0 0 0
λ/a a a λ λ λ λ λ λ λ

1 + − − −/0 + − 0 0 0 0
λ λ λ a/a2 λ/a a λ λ λ λ

2 + − − −/0 + − 0 −/0 0 0
λ λ λ λ λ λ a2 a/a2 λ λ

3 + − − −/0 + − 0 −/0 0 0
λ λ λ λ λ λ λ λ a2 λ

4 + − − −/0 + − 0 −/0 0 0
λ λ λ λ λ λ λ λ λ a

Table 5: SN P system with polarization, Π1,p, sequence of steps

Now, one can build a kP system, kΠ1,p, using the construction provided in the proof of
Theorem 8. The set of rules {r′x : f → x {gx}|x ∈ {+,−, 0}} ∪ {r′x,e : x → λ {= f}|x ∈
{+,−, 0}}∪ {r′f : f → f2 {= f}}, introduced in that proof, is denoted by R.

The kP system kΠ1,p = (A,µ,C1, · · ·C10, 10), is given by

1. A = {a,+,−, 0, f};
2. µ = ({C1, · · ·C10}, V), and V = {{C1, C4}, {C1, C5}, {C2, C4}, {C3, C6},

{C4, C7}, {C5, C8}, {C6, C7}, {C6, C8}, {C7, C9}, {C8, C9}, {C9, C10}};
3. each Ci = (ti, wi,0) is obtained from a compartment type, ti = (R′

i, δi), 1 ≤ i ≤ 10,
with initial multisets w1,0 = xf2+, w2,0 = yf2−, w3,0 = zf2−, where each of the
x, y, z is either a or λ, and w4,0 = w7,0 = w8,0 = w9,0 = f20, w5,0 = f2+, w6,0 =
f2−, w10,0 = f20. The sets of rules are R′

1 = {r′1,1 : a → (a+, t4)(a+, t5) {g+}}∪R,
R′

2 = {r′1,2 : a → (a−, t4) {g−}} ∪ R, R′
3 = {r′1,3 : a → (a−, t6) {g−}} ∪ R,

22

R′
4 = {r′1,4 : a → (a+, t7) {g+ ∨ g−}, r′2,4 : a2 → (a+, t7) {g0}} ∪ R, R′

5 =
{r′1,5 : a → (a+, t8) {g+}} ∪ R, R′

6 = {r′1,6 : a → (a−, t7)(a−, t8) {g−}} ∪ R,
R′

7 = {r′1,7 : a → (0, t9) {g+ ∨ g−}, r′2,7 : a2 → (a+, t9) {g0}} ∪ R, R′
8 = {r′1,8 :

a → (a−, t9) {g+ ∨ g−}, r′2,8 : a2 → (a−, t9) {g0}} ∪ R, R′
9 = {r′1,9 : a →

(0, t10) {g+ ∨ g−}, r′2,9 : a2 → (a0, t10) {g0}} ∪ R, R′
10 = ∅, and each execution

strategy, δi, 1 ≤ i ≤ 9, is a sequence defined with the three blocks introduced in
the proof of Theorem 8 and δ10 = ∅.
Table 6 presents the first four steps of executing kΠ1,p. Please note that every compart-

ment in each step contains f2, according to the definition of kΠ1,p, but this multiset is not
present in the table in order to save space. For each step, including the initial one, 0, the first
row contains the multisets of objects f2 and those indicating the polarizations (for example,
f20−/f20+− for C4 in step 1) and the second one points to the multisets over a (a/a2, the
same compartment and step). One can observe that the two tables illustrate the behaviour
of the two P systems as presented in the proof of Theorem 8. The final result computed by
kΠ1,p requires one more step, when f202a becomes f20a in C10.

Steps C1(x) C2(y) C3(z) C4 C5 C6 C7 C8 C9 C10

0 + − − 0 + − 0 0 0 0
λ/a a a λ λ λ λ λ λ λ

1 + − − 0− /0 +− +/+2 −2 0 0 0 0
λ λ λ a/a2 λ/a a λ λ λ λ

2 + − − −/0 + − 0 +− 0− /0 +− 0 0
λ λ λ λ λ λ a2 a/a2 λ λ

3 + − − −/0 + − 0 −/0 0 +− 0
λ λ λ λ λ λ λ λ a2 λ

4 + − − −/0 + − 0 −/0 0 02

λ λ λ λ λ λ λ λ λ a

Table 6: SN P system with polarization, kΠ1,p, sequence of steps

3.1.1 Complexity metrics

Below are compared the differences between the SN P systems and the corresponding
kP systems resulted from the mappings presented so far. These are expressed through
several complexity metrics. We start we some notations.

For a P system Π the following complexity metrics are considered

1. CompΠ = total number of Π′s membranes (neurons for SN P systems, compart-
ments for kP systems);

2. SymbΠ = size of Π′s alphabet (number of symbols);
3. RuleΠ = total number of Π′s rules;
4. P system structure: the graph associated with µ;
5. TimeΠ = number of time steps for computing a result.

The first three are called descriptional complexity metrics.

23

In the sequel are listed the values of these metrics for each pair of P systems
presented in the mappings. We denote by m the number of neurons of an SN P
system. These relationships are provided below, considering each of the SN P systems
investigated.

Standard/extended SN P systems. From the proof of Theorem 1 one can
extract the following results:

1. CompkΠe = CompΠe , when Πe does not use the environment; otherwise
CompkΠe = CompΠe + 1;

2. SymbkΠe = SymbΠe ;
3. RulekΠe = RuleΠe ;
4. P systems structure: the graphs of kΠe and Πe are the same (when Πe uses the

environment, then kΠe has an additional compartment);
5. TimekΠe = TimeΠe .

The execution strategy in every compartment of kΠe is choice.
In most of the cases discussed in this paper, Comp and P system structure will be

the same as above and they will be only mentioned when different.

SN P system with colored spikes and multiple channels. The metrics
relationships and the execution strategies for these SN P systems are as in the previous
case (Corollaries 2 and 3).

SN P systems with spikes and anti-spikes. (Theorem 4):

1. RulekΠaā = RuleΠaā +m;
2. TimekΠaā = TimeΠaā + p, where p is either 0 or 1.

The execution strategy of kΠaā is a sequence of two blocks: the first is maximal
parallelism and the second is a choice.

Standard/extended SN P systems with delay. (Theorem 5):

1. SymbkΠe,d
= SymbΠe,d

+ 2RD + 4, where RD = Max−min;
2. RulekΠe,d

≤ RuleΠe,d
+ (2RD + 3)ND, where RD is as above and ND is the total

number of neurons containing rules with delay.

The execution strategy of kΠe,d is a sequence of four blocks: choice, maximal
parallelism, choice, maximal parallelism, in this order.

SN P systems with weights on synapses. The same relationships and
execution strategy as in the case of standard/extended SN P systems with delay.

SN P systems with weights, potential and threshold. (Theorem 7):

1. RulekΠw,p,t = RuleΠw,p,t + 3m.

The execution strategy of kΠw,p,t is a sequence of three blocks: the first two are
maximal parallelism and the last is choice.

SN P systems with polarizations. (Theorem 8):

1. SymbkΠp = SymbΠp + 4;

24

2. RulekΠp = RuleΠp + 7m;
3. TimekΠp = TimeΠp + p, p is 0 or 1.

The execution strategy of kΠp is a sequence of three blocks: the first two are choices
and the last is maximal parallelism.

3.2 Other SN P system topics and connections with kP systems

In this section are discussed: a different approach on obtaining the result of a com-
putation and other execution strategies for SN P systems, in the context of mapping
these systems into kP systems.

3.2.1 A different way of computing the result produced by an SN
P system

In Subsection 2.1 is mentioned another way of computing the result of an SN P system,
which consists in the number of steps executed by the SN P system between the first
two spikes sent out to the environment by the output neuron - this is called type (ii)
mode of computing the result. We focus on standard and extended SN P systems with
no delay.

Theorem 9 For any standard/extended SN P system, Πe,ii, using type (ii) mode of
computing the result, there exists a kP system, kΠe,ii, such that N (kΠe,ii) = N (Πe,ii).

Proof We start with an extended SN P system with no delay, Πe,ii = (O, σ1, · · · , σm, syn, io),
which requires the use of the environment.

The following kP system, kΠe,ii = (A,µ,C1, · · · , Cn′ , n′), where n′ = m + 2, is con-
structed. The alphabet is A = {a, s, c, f}. Two new compartments are considered: Cm+1

given by Cm+1 = (tm+1, λ) and tm+1 = (∅, ∅), associated with the environment of the SN P
system and Cm+2 given by Cm+2 = (tm+2, λ) and tm+2 = (∅, ∅), introduced for collecting
the result of the computation, which reflects the number of steps executed by Πe,ii between
the time steps when the first two spike are sent out to environment.

For every neuron σi, different from the output neuron, i ̸= i0, the component Ci has the
initial multiset and the set of rules as in the proof of Theorem 1.

In Ci0 the initial multiset is wi0,0 = ani0 s4c and for any rule rj,i0 : Ej,i0/a
cj,i0 → b,

b ∈ {a, λ}, 1 ≤ j ≤ ki0 , the following rule is added to R′
i0 , r

′
j,i0 : sacj,i0 → (a, tm+1) {gEj,i0

},
when b = a in rj,i0 , 1 ≤ j ≤ ki0 ; or r

′
j,i0 : acj,i0 → λ {gEj,i0

}, when b = λ in rj,i0 , 1 ≤ j ≤ ki0 .
The object s is used for counting the number of steps executed between the times when

the two rules corresponding to those from σi0 send the first and the second spike, respectively,
to the environment. The symbol c is present in Ci0 only until the first rule mentioned before
is executed.

The following rules will be also added to R′
i0 :

r′ki0+1,i0
: cs → c {= s3},

r′ki0+2,i0
: cs → cs(s, tm+2) {(= s2 ∨ = s) ∧ < f},

r′ki0+3,i0
: s → sf {= s ∧ < f},

r′ki0+4,i0
: f → sf {< s ∧ = f}.

25

The execution strategy is δi0 , defined as a sequence of the blocks of rules B1, B2 where

B1 = {r′j,i0 |1 ≤ j ≤ ki0} denotes a choice and B2 = {r′ki0+j ,i0
|1 ≤ j ≤ 4}T specifies maximal

parallel execution of the rules.
Given the guards of the rules from B2, none of them is executed until a rule r′j,i0 sending

an a to Cm+1 is executed. When such a rule is applied (it corresponds to sending out the
first spike to the environment by the corresponding rule of σi0), then the rule r′ki0+1,i0

is

executed, as there are three objects s left in Ci0 , and these are reduced to two by executing
the rule. Since that moment onward, if for k, k ≥ 0, time steps none of the rules r′j,i0 that send

an a to Cm+1 is executed, then only the rule r′ki0+2,i0
from B2 is applied, which sends an s

to Cm+2, the compartment collecting the result (equal to the number of time steps between
the times when the rules corresponding to those in σi0 sending the first two spikes to the
environment are executed). When a rule r′j,i0 sending an a to Cm+1 is selected to be applied,

then a single s is left in Ci0 and r′ki0+2,i0
, r′ki0+3,i0

, from B2, are both executed, sending the

final s to Cm+2 and introducing an f in Ci0 , respectively. After that moment, if r′j,i0 , with
λ on the right side is selected to be applied or no rule at all is used from B1, then no rule
from B2 is executed. If r′j,i0 , sending an a to Cm+1, is selected to be applied, then r′ki0+4,i0

is executed, which restores the object s consumed by the previous rule. Hence, at the end of
the computation, in Cm+2 is obtained the number of objects s equal to the number of time
steps executed by Πe,ii between the first two spikes sent out from σi0 . In Cm+1 are collected
exactly the number of objects a equal to the number of spikes sent to the environment by σi0 .

□

There is an interesting aspect related to the execution strategies which are not the
same across the kP system: in each of the compartments Ci, 1 ≤ i ≤ m, i ̸= i0, the
execution strategy is choice; in Ci0 this is a sequence of two blocks.

3.2.2 Other strategies of using the rules for SN P systems

So far, all the SN P systems presented have used the same strategy of using the rules,
maximal parallelism at the system level and at most one rule per neuron in every step.
In contrast to this, the kP systems presented so far have shown that their execution
strategies may vary depending on the type of SN P systems considered. Subsequently,
four other strategies of applying the rules are considered for SN P systems [22]. One
focuses on standard and extended SN P systems with no delay, showing how these
execution strategies are represented in the corresponding kP system.

The execution strategies considered are: maximal parallelism mode (denoted mp) –
in each neuron the maximal parallelism of tissue-like P systems is applied; exhaustive
mode (denoted ex) and generalized use of rules (denoted g) – when in each neuron at
most one rule is selected, amongst those which are applicable, and for ex mode the
rule is executed as many times as possible (maximal execution of a rule) and for g
mode it is executed an arbitrary number of times; and flat maximal parallelism mode
(denoted fmp) – when in each neuron a set of applicable rules is executed if it is
maximal with respect to the inclusion order.

26

Theorem 10 For any standard/extended SN P system, Πe,α, using the execution strategy
α ∈ {mp, ex, g, fmp}, there exists a kP system, kΠe,α, such that N (kΠe,α) = N (Πe,α).

Proof For the standard/extended SN P system Πe,mp using maximal parallelism, we consider
the kP system built in the proof of Theorem 1 and change the execution strategy in each
compartment from choice to maximal parallelism, and denote it with kΠe,mp. Obviously,
Πe,mp and kΠe,mp compute the same result.

For α ∈ {ex, g} we consider a standard/extended SN P system, Πe,α =
(O, σ1, · · · , σm, syn, io), as in the previous proofs, and build the kP system kΠ′ =
(A,µ,C1, · · · , Cn, i0), where n = m or n = m + 1; A = {a, x} ∪ {fi|1 ≤ i ≤ K}, where
K = max{ki|1 ≤ i ≤ m}; µ is as in the proof of Theorem 1; Ci, corresponding to σi, are
instantiated from types ti, 1 ≤ i ≤ m, and the initial multiset of Ci is wi,0 = anixf1 · · · fK .
The set of rules R′

i of ti has the following rules:
for each rule rj,i : Ej,i/a

cj,i → apj,i ∈ Ri, 1 ≤ j ≤ ki, of the neuron σi, 1 ≤ i ≤ m, we have
r′j,i,1 : fj → λ {gEj,i

}, 1 ≤ j ≤ ki;

r′j,i,2 : acj,i → (apj,i , ti1) · · · (apj,i , tihi
) {< fj} 1 ≤ j ≤ ki;

r′j,i,3 : x → xfj {< fj}, 1 ≤ j ≤ ki.

When α = ex we consider the kP system kΠe,ex obtained from kΠ′ where the execu-
tion strategy of ti, 1 ≤ i ≤ m, is given by δi = {r′1,i,1, · · · , r

′
ki,i,1

} {r′1,i,2, · · · , r
′
ki,i,2

}T

{r′1,i,3, · · · , r
′
ki,i,3

}. This is a sequence of three blocks: the first block, a choice, selects and

runs a rule r′j,i,1 with its guard true, consuming fj ; the second block executes in a maxi-

mal manner the rule r′j,i,2 given that r′j,i,1 has been previously executed (this corresponds

to the maximal execution of rj,i in σi); finally, the rule r′j,i,3 from the last block is executed
restoring fj .

When α = g we consider the kP system kΠe,g constructed similar to the previous case,
where in the execution strategy the second block is replaced by {r′1,i,2, · · · , r

′
ki,i,2

}∗, which
executes the selected rule an arbitrary number of times.

Obviously, in each of these two cases the SN P system and the corresponding kP system
compute the same result.

For α = fmp we consider a standard/extended SN P system, Πe,fmp =
(O, σ1, · · · , σm, syn, io), and construct a kP system, kΠe as in the proof of Theorem 1, where
for each rule rj,i : Ej,i/a

cj,i → apj,i ∈ Ri, 1 ≤ j ≤ ki, with c ≥ p ≥ 0, c ≥ 1, in neuron σi,
1 ≤ i ≤ m, one have r′j,i : a

cj,i → (apj,i , ti1) · · · (a
pj,i , tihi

) {gEj,i
}, in R′

i of ti.
For any ti, 1 ≤ i ≤ m, and q, 1 ≤ q ≤ ki, we denote by Jq the q-tuples of indexes of rules

from R′
i, i.e., Jq = {(j1, · · · , jq)|1 ≤ je ≤ ki, 1 ≤ e ≤ q, j1 ̸= · · · ̸= jq}, and consider for each

(j1, · · · , jq) ∈ Jq the rules r′je,i, 1 ≤ e ≤ q. One denotes by acj1···jq the concatenation of the
left side of the rules; apj1···jq is obtained similarly by concatenating their right side (one can
observe that not always apj1···jq is the concatenation of aje , 1 ≤ e ≤ q) and considers the
rule r′′j1···jq : acj1···jq → fapj1···jq {gEj1,i

∧ · · · ∧ gEjq,i
∧ < f}, where f is a new symbol. One

denotes by Bq the set {r′′j1···jq |(j1, · · · , jq) ∈ Jq} and define R′′
i = B1∪· · ·∪Bki

∪{r′′f : f → λ},
where r′′f : f → λ is a new rule.

Now, we consider the kP system kΠe,fmp, obtained from kΠe, where the alphabet of
kΠe,fmp is A = {a, f}; µ is the same for the two kP systems; each type t′i, 1 ≤ i ≤ m, is given
by the sets R′′

i and the execution strategy δ′i = Bki
& . . .&B1&{r′′f }, where each block of the

sequence is a choice. Each compartment C′
i of type t′i has the same initial multiset as Ci.

Now, one can show that the kP system kΠe,fmp produces the same results as Πe,fmp.
Indeed, the flat maximal parallelism of Π in each neuron σi is simulated by the execution

27

strategy δ′i defined above. This is a sequence of ki + 1 blocks, each of them being a choice.
One notices that Bki

, the first block of the execution strategy, corresponds to the execution
of all the rules, if at all possible, and B1 executes one of the rules of R′

i. In fact, the set B1

is equal to R′
i. This sequence checks which is the largest set of R′

i that can be executed and
runs it. Whenever in a block Bq a rule is selected to be executed, an f is also introduced
and the rest of the blocks, Bq−1, . . . , B1 are no longer applicable and finally f is removed,
by executing r′′f .

□

3.2.3 Other complexity metrics for standard/extended SN P
systems

Standard/extended SN P systems computing the result as the number of
steps between the first two spikes. (Theorem 9):

1. CompkΠe,ii = CompΠe,ii + 2;
2. SymbkΠe,ii = SymbΠe,ii + 3;
3. RulekΠe,ii = RuleΠe,ii + 4;
4. System structure: one more compartment added to kΠe,ii.

The execution strategy of every compartment of kΠe,ii different from the output
compartment is choice and for the output compartment is a sequence of two blocks:
choice followed by maximal parallelism.

Standard/extended SN P systems. (Theorem 10):
when α ∈ {ex, g}:

1. SymbkΠe,α = SymbΠe,α +K + 1;
2. RulekΠe,α = 3RuleΠe,α .

when α = fmp :

1. SymbkΠe,fmp
= SymbΠe,fmp

+ 1;

2. RulekΠe,fmp
= 2k1 + · · ·+ 2km −m.

The execution strategy in the compartments of kΠe,α is: maximal parallelism, when
α = mp; sequence of three blocks: choice, maximal parallelism, choice, when α = ex;
sequence of three blocks: choice, arbitrary execution, choice, when α = g. If α = fmp,
then in each compartment, Ci, 1 ≤ i ≤ m, the execution strategy is a sequence of
ki + 1 blocks, each of them choice, where ki is the number of rules of σi.

4 Testing and verification

Membrane computing models have been developed for a large spectrum of applications
[59, 6]. Their functionality should be validated and checked for errors or unintended
behaviour. This can be obtained through various methods and techniques. We show
below, using Example 1, how model based testing and formal verification using model
checking can be used in this respect, pointing also to the complementarity of these
approaches.

28

4.1 Model based testing

Model based testing methods for applications using membrane computing models have
been considered, especially those derived from finite state machine based testing [15].
Special classes of membrane systems used for testing purposes have been considered
and studied in relation to X-machines, which are extensions of finite state machines
[10]. Testing methods for spiking neural P systems [16] and kernel P systems [17] have
been introduced in the context of learning X-machines associated with them. A dif-
ferent type of testing techniques, using search based software engineering approaches,
have been introduced for applications using basic P systems [53].

In the sequel we illustrate such a testing method for an application based on
Example 1. One uses a learning algorithm for kernel P systems based on learning X-
machines that are equivalent to these P systems for computations of bounded length.
The inferred X-machine is used to generate test sets [17]. Such a test set that covers all
the states of the X-machine is used to reveal the errors of the application mentioned
above. Errors seeded into the application using mutants [21] will be used to illustrate
the efficacy of the test set.

For the SN P system Π1 introduced in Example 1 the kP system kΠ1 is obtained
using Theorem 1. We use the kP system kΠ1 instead of the original model, Π1, because
for the former we have a tool, kPWorkbench [1], allowing to simulate the kP system
and then apply the learning algorithm to get the X-machine that generates the test
set.The two P system models, simulations of the kP system, the learning algorithm,
tests sequences and errors discovered by these sequences are available from the repos-
itory [27]. The learning algorithm inferring an X-machine [17] is applied for an upper
bound limit equal to 4 for kΠ1 computations. The test set generated by the learning
algorithm covers all the states of the X-machine corresponding to all the configurations
of the kP system that are reachable in maximum 4 steps. Each test sequence includes
the labels of the rules applied in the above mentioned calculations and the starting
and ending configurations in each computation step. The test sequences obtained will
n be applied to the implementation of the logical gate presented in Example 1.

The SN P system, Π1, and the corresponding kP system, kΠ1, contain ten neurons
(compartments) each. It follows that a configuration will have ten multiset values,
generically denoted [m1,m2, · · · ,m10]. In each computation step at most one rule
is used in each neuron of Π1 (compartment of kΠ1). The notations used in Π1 and
kΠ1 for rules will be used subsequently in describing test sequences. Some of the test
sequences are listed below, showing the rules and configurations involved. We consider
the input spikes a, λ and a for the input neurons σ1, σ2 and σ3, respectively. These are
the input values corresponding to x = 1, y = 0 and z = 1. The initial configuration is
[a, λ, a, λ, λ, λ, λ, λ, λ, λ].

Below are listed some test sequences generated based on the learning algorithm
included in kPWorkbench. They start from the initial configuration, with
length = 1: [a, λ, a, λ, λ, λ, λ, λ, λ, λ] /{r1,1, r3,1}/ [λ, λ, λ, a, λ, a, a2, λ, λ, λ];
length = 2: [a, λ, a, λ, λ, λ, λ, λ, λ, λ] /{r1,1, r3,1}/ [λ, λ, λ, a, λ, a, a2, λ, λ, λ]
/{r4,1, r6,1, r7,2}/ [λ, λ, λ, λ, a2, λ, λ, a, λ, λ];
and length = 4: [a, λ, a, λ, λ, λ, λ, λ, λ, λ] /{r1,1, r3,1}/ [λ, λ, λ, a, λ, a, a2, λ, λ, λ]

29

/{r4,1, r6,1, r7,2}/ [λ, λ, λ, λ, a2, λ, λ, a, λ, λ] /{r1,1, r3,1}/
[λ, λ, λ, λ, λ, λ, λ, λ, a, λ] /{r9,1}/ [λ, λ, λ, λ, λ, λ, λ, λ, λ, a].

One can notice that each of the shorter sequences is a prefix of a larger one.
Hence, the configurations covered by a sequence of length 1 are also covered by those
of lengths 2 and 4, and the sequence of length 4 includes the configurations of any
shorter sequences that are its prefixes. For this reason, only test sequences of length
4 will be used below.

We consider now mutants applied to the implementation of the the SN P system
Π1. The mutants used will be generated by applying the following mutation operations:
a spiking rule is replaced by a forgetting rule, i.e., as → a becomes as → λ. It can
be observed that each of them will be discovered by a test sequence revealing the
configuration that is corrupted and pointing to the error. This approach is similar
to the experiments made in [21] for a broader set of mutants. The test sequence
must be one of those where the mutated rule is present. For example, if the rule

r1,1 : a → a is mutated as r
(m)
1,1 : a → λ then any of the above listed test sequences

will reveal this error as the second configuration is now [λ, λ, λ, λ, λ, a, a, λ, λ, λ] which
is different from the expected one [λ, λ, λ, a, λ, a, a2, λ, λ, λ], showing that an error in

using r1,1 did happen. Similarly, by mutating r4,1 : a → a into r
(m)
4,1 : a → λ one

gets a similar corrupted configuration revealing the error. If r9,1 : a2 → a is mutated

into r
(m)
9,1 : a2 → λ then this error is also identified by the same testing sequence.

Obviously, shorter teste sequences would have revealed the first two errors.
All the test sequences, some mutation testing, the SN P system and kP model, as

well as the X-machine inferred model are available at [27].
We claim that for this example the test sequences generated by the method pre-

sented above will reveal all the errors produced by mutants obtained by changing
either the left hand side or right hand side of any rule in Π1.

4.2 Verification

Formal verification is a method used to ensure that a model is correct before it is
used to develop a system. Model checking is a type of formal verification in which
the behaviour of a system, specified as a formal model, is analysed against various
properties or queries expressed in a specific temporal logic.

Kernel P systems can be specified in a domain specific language as part of the
software framework, called kPWorkbench [1, 20], which also includes a verification
component [11] allowing to map a kP system into various model checkers. One of
these model checkers used in connection with kP systems verification is NuSMV [11].
The modelling, simulation and verification aspects of this software framework have
been presented in [7, 8]. For the example mentioned above, we present two sets of
properties which are listed in Table 7. Each property is defined in three ways. Firstly,
this is formulated using natural language-like patterns and then two translations into
LTL and CTL logics are provided.

The properties below are verified for the kP system kΠ1 corresponding to the SN
P system Π1 presented in Example 1. All these properties can be expressed for Π1

by replacing compartment Ci by neuron σi, objects by spikes and they remain true

30

in this context. In the presentation below we will refer to some properties of the kP
system kΠ1 connecting them to test sequences used for testing the application based
on the SN P system Π1. In fact, these properties should refer to Π1, as we aim to
validate Π1, by using kΠ1 as an analysis instrument.

The first eight properties specify that for each of the possible input values, x, y, z
the expected result is obtained. Ni.a gives the number of a′s in compartment Ci,
1 ≤ i ≤ 3, one of the input compartments of the kP system. N10.a refers to the number
of a′s in the compartment C10, where the result of the logical gate is obtained.

The result of the logical gate is true for the following inputs: x = 0, y = 1, z = 1 or
x = 1, y = 0, z = 1 or x = 1, y = 1, z = 1. These are expressed by the temporal logic
properties defined in cases 4, 6 and 8, respectively, which all return true. The other
cases, returning false, correspond to the situations when the inputs to the logical gate
lead to false results. The sixth case corresponds to the testing sequence of length 4
discussed above. For each of the eight properties there is a test sequence of length
less than or equal to 4. When there is no input, i.e., case 1 in the table, then the
corresponding test sequence (of length 0) is λ. When only y = 1 and the rest are 0,
leading to a false result, i.e., case 3 in the table, then the corresponding test sequence
of length 3 is /r2,1/r4,1/r5,2/ leading to a result 0 in C10. For the other six cases there
are sequences of length 4, three leading to 1, cases 4, 6 and 8, and three to 0, cases 2,
5 and 7. All these can be found in the test set available at the link provided.

The other two properties express some invariants. The ninth property proves that
if at least one of the variables, x, y, z is 1 then C5 or C9 contains at least an a.
The tenth property considers only two entries x, z and proves that if at least one
is 1, then irrespective of the value of y, C8 contains an a. Each of these properties
makes correlations between different inputs and some intermediary values of the model
and cannot be replicated by any single test sequence. The test sequences provided,
in contrast to the properties listed in Table 7, offer more details, such as all the
intermediary steps, with rules and configurations. These facts outline that the two
approaches provide some similar results, but also refer to distinct useful insights that
help analysing the given system from various perspectives.

The two validation methods presented above make effective use of the investigation
on mapping different classes of SN P systems into kP systems.

31

Property

1

always ((N1.a = 0 and (N2.a = 0 and N3.a = 0)) implies
(eventually N10.a = 0));

falseLTLSPEC G (((N1.a = 0 & (N2.a = 0 & N3.a = 0)) -> F (N10.a =
0 & pInS)) | !pInS)

SPEC AG (((N1.a = 0 & (N2.a = 0 & N3.a = 0)) -> EF (N10.a =
0 & pInS)) | !pInS)

2

always ((N1.a = 0 and (N2.a = 0 and N3.a = 1)) implies
(eventually N10.a = 0));

falseLTLSPEC G (((N1.a = 0 & (N2.a = 0 & N3.a = 1)) -> F (N10.a =
0 & pInS)) | !pInS)

SPEC AG (((N1.a = 0 & (N2.a = 0 & N3.a = 1)) -> EF (N10.a =
0 & pInS)) | !pInS)

3

always ((N1.a = 0 and (N2.a = 1 and N3.a = 0)) implies
(eventually N10.a = 0));

falseLTLSPEC G (((N1.a = 0 & (N2.a = 1 & N3.a = 0)) -> F (N10.a =
0 & pInS)) | !pInS)

SPEC AG (((N1.a = 0 & (N2.a = 1 & N3.a = 0)) -> EF (N10.a =
0 & pInS)) | !pInS)

4

always ((N1.a = 0 and (N2.a = 1 and N3.a = 1)) implies
(eventually N10.a = 1));

trueLTLSPEC G (((N1.a = 0 & (N2.a = 1 & N3.a = 1)) -> F (N10.a =
1 & pInS)) | !pInS)

SPEC AG (((N1.a = 0 & (N2.a = 1 & N3.a = 1)) -> EF (N10.a =
1 & pInS)) | !pInS)

5

always ((N1.a = 1 and (N2.a = 0 and N3.a = 0)) implies
(eventually N10.a = 0));

falseLTLSPEC G (((N1.a = 1 & (N2.a = 0 & N3.a = 0)) -> F (N10.a =
0 & pInS)) | !pInS)

SPEC AG (((N1.a = 1 & (N2.a = 0 & N3.a = 0)) -> EF (N10.a =
0 & pInS)) | !pInS)

6

always ((N1.a = 1 and (N2.a = 0 and N3.a = 1)) implies
(eventually N10.a = 1));

trueLTLSPEC G (((N1.a = 1 & (N2.a = 0 & N3.a = 1)) -> F (N10.a =
1 & pInS)) | !pInS)

SPEC AG (((N1.a = 1 & (N2.a = 0 & N3.a = 1)) -> EF (N10.a =
1 & pInS)) | !pInS)

7

always ((N1.a = 1 and (N2.a = 1 and N3.a = 0)) implies
(eventually N10.a = 0));

falseLTLSPEC G (((N1.a = 1 & (N2.a = 1 & N3.a = 0)) -> F (N10.a =
0 & pInS)) | !pInS)

SPEC AG (((N1.a = 1 & (N2.a = 1 & N3.a = 0)) -> EF (N10.a =
0 & pInS)) | !pInS)

8

always ((N1.a = 1 and (N2.a = 1 and N3.a = 1)) implies
(eventually N10.a = 1));

trueLTLSPEC G (((N1.a = 1 & (N2.a = 1 & N3.a = 1)) -> F (N10.a =
1 & pInS)) | !pInS)

SPEC AG (((N1.a = 1 & (N2.a = 1 & N3.a = 1)) -> EF (N10.a =
1 & pInS)) | !pInS)

9

always ((N1.a = 1) or ((N2.a = 1) or (N3.a = 1))) implies
(eventually ((N5.a > 0) or (N9.a > 0)));

trueLTLSPEC G ((N1.a = 1 | (N2.a = 1 | N3.a = 1)) -> F (N5.a > 0
| N9.a > 0))

SPEC AG ((N1.a = 1 | (N2.a = 1 | N3.a = 1)) -> EF (N5.a > 0
| N9.a > 0))

10
always ((N1.a = 1) or (N3.a = 1)) implies (eventually (N8.a
= 1)); true

LTLSPEC G ((N1.a = 1 | N3.a = 1) -> F N8.a = 1)

SPEC AG ((N1.a = 1 | N3.a = 1) -> EF N8.a = 1)

Table 7: Properties of the logical gate model, kΠ1,p

32

5 Conclusions

In this paper is investigated the process of mapping some of the most representative
classes of SN P systems into kP systems, pointing to how different syntactic features,
such as alphabet, format of different rules or synapses linking neurons, as well as
semantic conditions attached to rule application – rules with or with no delay, con-
straints on selecting them (based on regular expressions, threshold, electrical charges,
strategies for execution), or to relationships between various elements of the system
(spikes and anti-spikes, potential and threshold, multisets of electrical charges) have
an impact on the complexity aspects of this process. In this respect it has been pointed
out that the graphs associated with the structure of the two P systems and the num-
ber of compartments vs the number of neurons are almost the same in all the cases.
Some complexity metrics measuring the size of the alphabet, Symb, overall number
of rules, Rule, and execution time, Time, provide distinct measurements for syntactic
and semantic features mentioned above. Another important aspect that is associated
with the execution time is provided by the execution strategies associated with com-
partments of various kP systems obtained through mapping. As the Time measure is
quite the same in most of the cases for the two P systems engaged in mapping, the
execution strategy reveals new insights related to this complexity metric. All these
complexity results and the connections with their mapping theoretical underpinning
are summarized in Sections 3.1.1 and 3.2.3.

One direct impact of these investigations connecting SN P systems and kP systems
is on extending verification and testing procedures, already in place for kP systems, to
various classes of SN P systems. In the context of an application based on an extended
SN P system with no delay, Πe, testing sequences generated from the kP system, kΠe

are applied straight away to test the application (based on Πe) and the model checking
verification procedure developed for kΠe is used to verify the correctness of Πe model.

Some future research avenues coming out of this work are (i) mapping of other SN
P systems, with a different spectrum of features, such as those with dynamic structure
or with plasticity; (ii) mapping some of the most complex applications based on SN
P systems into kP systems and using testing and verification methods to validate
them; (iii) developing further testing methods that are able to reveal other types of
errors than those presented here; (iv) providing an integrated tool supporting the
development, testing and verification of case studies and applications for these models.

Acknowledgements

The authors of this paper would like to thank all the anonymous reviewers for their
effort and time spent in carefully reading the manuscript and providing construc-
tive and useful comments and suggestions that significantly contributed to the paper
improvement. Florentin Ipate’s and Ionuţ Mihai Niculescu’s research was supported
by the European Regional Development Fund, Competitiveness Operational Program
2014-2020 through project IDBC (code SMIS 2014+: 121512). The other contributors
have been partially supported by the Royal Society grant IESR3213176, 2022-2025.

33

References

[1] Bakir, M.E., Ipate, F., Konur, S., Mierlă, L., Niculescu, I.-M.: Extended simula-
tion and verification platform for kernel P systems. In: Gheorghe M. et al (ed.)
15th Int. Conference on Membrane Computing, LNCS 8961, pp. 158–178 (2014)

[2] Cabarle, F.G.C., Adorna, H.N., Jiang, M., Zeng, X.: Spiking neural P systems
with scheduled synapses. IEEE Transactions on Nanobioscience 16(8), 792–801
(2017)

[3] Cabarle, F.G.C., Adorna, H.N., Pérez-Jiménez, M.J., Song, T.: Spiking neural P
systems with structural plasticity. Neural Computing and Applications 26(8),
1905–1917 (2015)

[4] Chen, H., Ishdorj, T.O., Ionescu, M., Păun, A., Păun, Gh., Pérez-Jiménez,
M.J.: Spiking neural P systems with extended rules: universality and languages.
Natural Computing 7(2), 147–166 (2008)

[5] Chen, Y., Chen, Y., Zhang, G., Paul, P., Wu, T., Zhang, X., Rong, H., Ma, X.: A
survey of learning spiking neural P systems and a novel instance. International
Journal of Unconventional Computing 16(2–3), 173–200 (2021)

[6] Frisco, P., Pérez-Jiménez, M.J., Gheorghe, M. (eds.): Applcations of Membrane
Computing in Systems and Synthetic Biology. Springer, Verlag (2014)

[7] Gheorghe, M., Ceterchi, R., Ipate, F., Konur, S.: Kernel P systems modelling,
testing and verification - sorting case study. In: Leporati, A. et al (ed.) 17th Int.
Conference on Membrane Computing, LNCS 10105, pp. 233–250. Cham (2017)

[8] Gheorghe, M., Ceterchi, R., Ipate, F., Konur, S., Lefticaru, R.: Kernel P systems:
from modelling to verification and testing. Theoretical Computer Science 724,
45–60 (2018). URL http://hdl.handle.net/10454/11720

[9] Gheorghe, M., Ipate, F., Dragomir, C., Mierlă, L., Valencia-Cabrera, L., Garćıa-
Quismondo, M., Pérez-Jiménez, M.J.: Kernel P systems - Version I. 11th

Brainstorming Week on Membrane Computing pp. 97–124 (2013). URL http:
//www.gcn.us.es/files/11bwmc/097 gheorghe ipate.pdf

[10] Gheorghe, M., Ipate, F., Konur, S.: Testing based on identifiable P systems using
cover automata and X-machines. Information Sciences 372, 565—-578 (2016)

[11] Gheorghe, M., Konur, S., Ipate, F., Mierlă, L., Bakir, M.E., Stannett, M.: An
integrated model checking toolset for kernel P systems. In: Rozenberg, G. et al
(ed.) 16th Int. Conference on Membrane Computing, LNCS 9504, pp. 153–170.
Springer (2015)

[12] Gheorghe, M., Lefticaru, R., Konur, S., Niculescu, I.M., Adorna, H.N.: Spik-
ing neural P systems: matrix representation and formal verification. Journal of
Membrane Computing 3(2), 133–148 (2021). DOI 10.1007/s41965-021-00075-1

[13] Ibarra, O.H., Păun, A., Păun, Gh., Rodŕıguez-Patón, A., Sosik, P., Woodworth,
S.: Normal forms for spiking neural P systems. Theoretical Computer Science
372, 196–217 (2007)

[14] Ionescu, M., Păun, Gh., Yokomori, T.: Spiking neural P systems. Fundamenta
Informaticae 71(2–3), 279–308 (2006)

[15] Ipate, F., Gheorghe, M.: Finite state based testing of P systems. Natural
Computing 8(4), 833–846 (2009)

[16] Ipate, F., Gheorghe, M.: A model learning based testing approach for spiking

34

http://hdl.handle.net/10454/11720
http://www.gcn.us.es/files/11bwmc/097_gheorghe_ipate.pdf
http://www.gcn.us.es/files/11bwmc/097_gheorghe_ipate.pdf

neural P systems. Theoretical Computer Science 924, 1–16 (2022)
[17] Ipate F. Niculescu, I., Lefticaru, R., Konur, S., Gheorghe, M.: A model learning

based testing approach for kernel P systems. Theoretical Computer Science 965,
113975 (2023)

[18] Konur, S., Gheorghe, M., Dragomir, C., Ipate, F., Krasnogor, N.: Conven-
tional verification for unconventional computing: a genetic XOR gate example.
Fundamenta Informaticae 134(1–2), 97–110 (2014)

[19] Konur, S., Gheorghe, M., Dragomir, C., Mierlă, L., Ipate, F., Krasnogor, N.:
Qualitative and quantitative analysis of systems and synthetic biology constructs
using P systems. ACS Synthetic Biology 4(1), 83–92 (2015)

[20] Konur, S., Mierlă, L., Ipate, F., Gheorghe, M.: kPWorkbench: A software suit
for membrane systems. SoftwareX 11, 100407 (2020)

[21] Lefticaru, R., Gheorghe, M., Ipate, F.: An empirical evaluation of P system
testing techniques. Natural Computing 10(1), 151—-165 (2016)

[22] Leporati, A., Mauri, G., Zandron, C.: Spiking neural P systems: main ideas and
results. Natural Computing 21(4), 629–649 (2022). DOI https://doi.org/10.
1007/s11047-022-09917-y

[23] Li, Y., Song, B., Zeng, X.: Spiking neural P systems with weights and delays on
synapses. Theoretical Computer Science 968, 114028 (2023)

[24] Liu, Y., Zhao, Y.: Spiking neural P systems with lateral inhibition. Neural
Networks 167, 36–49 (2023)

[25] Lv, Z., Bao, T., Zhou, N., Peng, H., Huang, A., Riscos-Núñez, A., Pérez-Jiménez,
M.J.: Spiking neural P systems with extended channel rules. International
Journal of Neural Systems 31(1), 2050049 (2021)

[26] Macababayao, I.C.H., Cabarle, F.G.C., de la Cruz, R.T., Zeng, X.: Normal forms
for spiking neural P systems and some of its variants. Information Sciences 595,
344–363 (2022)

[27] Niculescu, I.M.: Logical gate (2025). URL https://github.com/
Kernel-P-Systems/kPWorkbench/tree/Mapping-SNPS-Into-kPS

[28] Pan, L., Păun, Gh.: Spiking neural P systems with anti-spikes. International
Journal of Computers, Communications & Control IV(3), 273–282 (2009)

[29] Pan, L., Păun, Gh., Pérez-Jiménez, M.J.: Spiking neural P systems with neuron
division and budding. Science China Information Sciences 54, 1596–1607 (2011)

[30] Pan, L., Wang, J., Hoogeboom, H.: Spiking neural P systems with astrocytes.
Neural Computation 24, 805–825 (2012)

[31] Pan, L., Wu, T., Zhang, Z.: A bibliography of spiking neural P systems. Bulletin
of the International Membrane Computing Society (I M C S) 1(1), 63–78 (2016)

[32] Pan, L., Zeng, X., Zhang, X., Jiang, Y.: Spiking neural P systems with weighted
synapses. Neural Processing Letters 35(1), 13–27 (2012)

[33] Pang, S., Wang, M., Qiao, S., Wang, X., Chen, H.: Fault diagnosis for service
composition by spiking neural P systems with colored spikes. Chinese Journal of
Electronis 28(5), 1033–1040 (2019)

[34] Păun, Gh.: Computing with membranes. Tech. rep., Turku Centre for Computer
Science (1998). URL http://tucs.fi/publications/view/?pub id=tPaun98a

35

https://github.com/Kernel-P-Systems/kPWorkbench/tree/Mapping-SNPS-Into-kPS
https://github.com/Kernel-P-Systems/kPWorkbench/tree/Mapping-SNPS-Into-kPS
http://tucs.fi/publications/view/?pub_id=tPaun98a

[35] Păun, Gh.: Computing with membranes. Journal of Computer and System Sci-
ences 61(1), 108–143 (2000). DOI 10.1006/jcss.1999.1693. URL https://doi.org/
10.1006/jcss.1999.1693

[36] Păun, Gh.: Membrane Computing - An Introduction. Springer, Verlag (2002)
[37] Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of

Membrane Computing. Oxford University Press (2010)
[38] Păun, Gh., Wu, T., Zhang, Z.: Open problems, research topics, recent results on

numerical and spiking neural P systems (The ‘Curtea de Argeş 2015 series’). In:
Proceedings of Fourteenth Brainstorming Week on Membrane Computing, pp.
285–300. Sevilla, Spain: Fenix Editora (2016)

[39] Peng, H., Bao, T., Luo, X., Wang, J., Song, X., Riscos-Núñez, A., Pérez-Jiménez,
M.J.: Dendrite P systems. Neural Networks 127, 110–120 (2020)

[40] Peng, H., Li, B., Wang, J., Song, X., Wang, T., Valencia-Cabrera, L., Pérez-
Hurtado, I., Riscos-Núñez, A., Pérez-Jiménez, M.J.: Spiking neural P systems
with inhibitory rules. Knowledge-Based Systems 188, 105064 (2020)

[41] Peng, H., Lv, Z., Li, B., Luo, X., Wang, J., Song, X., Wang, T., Pérez-Jiménez,
M.J., Riscos-Núñez, A.: Nonlinear spiking neural P systems. International
Journal of Neural Systems 30(10), 2050008 (2020)

[42] Peng, H., Wang, J.: Coupled neural P systems. IEEE Transactions on Neural
Networks and Learning Systems 30(6), 1672–1682 (2019)

[43] Peng, H., Wang, J.: Advanved Spiking Neural P Systems - Models and Applica-
tions. Springer, Verlag (2024)

[44] Peng, H., Wang, J., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Dynamic threshold
neural P systems. Knowledge-Based Systems 163, 875–884 (2019)

[45] Peng, H., Wang, J., Pérez-Jiménez, M.J., Wang, H., Shao, J., Wang, T.: Fuzzy
reasoning spiking neural P system for fault diagnosis. Information Sciences 235,
106–118 (2013)

[46] Peng, H., Yang, J., Wang, J., Wang, T., Sun, Z., Song, X., Luo, X., Huang, X.:
Spiking neural P systems with multiple channels. Neural Networks 95, 66–71
(2017)

[47] Rong, H., Wu, T., Pan, L., Zhang, G.: Spiking neural P systems: Theoreti-
cal results and applications. In: Graciani, C. et al. (ed.) Enjoying Natural
Computing, LNCS 11270, pp. 256–268 (2018)

[48] Song, B., Li, K., Orellana-Mart́ın, D., Pérez-Jiménez, M.J., Hurtado, I.P.: A
survey of nature-inspired computing: Membrane computing. ACM Computing
Surveys 54(1), 629–649 (2021). DOI https://doi.org/10.1145/3431234

[49] Song, T., Gong, F., Liu, X., Zhao, Y., Zhang, X.: Spiking neural P systems with
white hole neurons. IEEE Transactions on Nanobioscience 15(7), 666–673 (2016)

[50] Song, T., Pan, L.: Spiking neural P systems with request rules. Neurocomputing
193, 2816–2829 (2016)

[51] Song, T., Pan, L., Păun, Gh.: Spiking neural P systems with rules on synapses.
Theoretical Computer Science 529, 82–95 (2014)

[52] Song, T., Rodŕıguez-Patón, A., Zheng, P., Zeng, X.: Spiking neural P systems
with colored spikes. IEEE Transactions on Cognitive and Development Systems
10(4), 2816–2829 (2017)

36

https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1006/jcss.1999.1693

[53] Ţurlea, A., Gheorghe, M., Ipate, F., Konur, S.: Search-based testing in membrane
computing. Journal of Membrane Computing 1(4), 565—-578 (2019)

[54] Verlan, S., Freund, R., Alhazov, A., Ivanov, S., Pan, L.: A formal framework
for spiking neural P systems. Journal of Membrane Computing 2(4), 355–368.
(2020). DOI 10.1007/s41965-021-00075-1

[55] Wang, J., Hoogeboom, H., Pan, L., Păun, Gh., Pérez-Jiménez, M.J.: Spiking
neural P systems with weights. Neural Compution 22(10), 2615–2646 (2010)

[56] Wu, T., Neri, F., Pan, L.: On the tuning of the computation capability of spiking
neural membrane systems with communication on request. International Journal
of Neural Systems 32(8), 2250037 (2022)

[57] Wu, T., Pan, L., Tan, K.C.: Numerical spiking neural P systems. IEEE
Transactions on Neural Networks and Learning Systems 32(6), 2816–2829 (2021)

[58] Wu, T., Păun, A., Zhang, Z., Pan, L.: Spiking neural P systems with polarizations.
IEEE Transactions on Neural Networks and Learning Systems 29(8), 3349–3360
(2018)

[59] Zhang, G., Pérez-Jiménez, M.J., Gheorghe, M.: Real-life Applications with
Membrane Computing. Springer, Verlag (2017)

[60] Zhang, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Verlan, S., Konur, S., Hinze,
T., Gheorghe, M.: Membrane Computing Models: Implementations. Springer,
Verlag (2021)

[61] Zhang, G., Verlan, S., Wu, T., Cabarle, F., Xue, J., Orellan-Mart́ın, D., Dong, J.,
Valencia-Cabrera, L., Pérez-Jiménez, M.J.: Spiking Neural P Systems - Theory,
Applications and Implementations. Springer, Verlag (2024)

[62] Zhang, X., Pan, L., Păun, A.: On the universality of axon P systems. IEEE
Transactions on Neural Networks and Learning Systems 26(11), 2816–2829
(2015)

37

	Introduction
	Preliminaries and basic definitions
	Standard and extended SN P systems
	Kernel P systems

	SN P systems and kP systems
	Relationships between SN P systems and kP systems
	Complexity metrics

	Other SN P system topics and connections with kP systems
	A different way of computing the result produced by an SN P system
	Other strategies of using the rules for SN P systems
	Other complexity metrics for standard/extended SN P systems

	 Testing and verification
	Model based testing
	Verification

	Conclusions

