
Chapter 1

Kernel P Systems and Stochastic P Systems for
Modelling and Formal Verification of Genetic Logic
Gates

Marian Gheorghe, Savas Konur and Florentin Ipate

Abstract P systems are the computational models of membrane computing, a computing paradigm
within natural computing area inspired by the structure and behaviour of the living cell. In this
chapter, we discuss two variants of this model, a non-deterministic case, called kernel P (kP) systems,
and a stochastic one, called stochastic P (sP) systems. For both we present specification laguages
and associated tools, including simulation and verification components. The expressivity and analysis
power of these natural computing models will be used to illustrate the behaviour of two genetic logic
gates.
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cation / property language, genetic logic gates

1.1 Introduction

Membrane computing is a computational paradigm, within the more general area of natural computing
[32], inspired by the structure and behaviour of eukaryotic cells. The formal models introduced in this
context are called membrane systems or P systems. After their introduction [27], membrane systems
have been widely investigated for computational properties and complexity aspects, but also as a
model for various applications [28]. Many different variants of P systems have been introduced and
studied, mainly due to the many theoretical challenges induced by them, but also motivated by the
need to model different problems. Most of these variants of P systems consider key features of the
biological cell as part of the computational models introduced. In this respect, they deal with either
simple bio-chemical elements (called objects) or more complex molecules like DNA strands which are
codified as strings. Specific molecules like catalysts, activators and inhibitors are also utilised by the
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models. Chemical interactions within compartments and transmembrane regulations are represented
by rewriting rules and comunication rules, respectively. Various biological entities, like, cells, tissues,
as well as specialised cells, such as neurons, are described in the membrane systems framework by cell
P systems, tissue P systems, and neural P systems, respectively. The combination of these features
leads to a rich set of variants of P systems. A thorough presentation of the theoretical developments
is provided in [28], whereas various applications of this computing paradigm in modelling problems
from various areas, including computer science, graphics and linguistics, can be found in [8]. More
recently, it has been applied to systems and synthetic biology [12], optimisations and graphics [18] and
synchronisation of distributed systems [10]. Some of the future challenges of the field are presented in
[16]. The most up-to-date information on P systems can be found on its website [26].

Every membrane system consists of a set of compartments linked together in accordance with
certain well-defined system structures, e.g., tree and graph in the case of cell P systems and tissue
(or neural) P systems, respectively. Some systems have a static structure, others have a dynamic one.
Each compartment contains a multiset of elements, either simple objects or more complex data, strings.
These are either transformed or transferred between neighbour compartments, due to some rules which
are specific to each compartment. A membrane system appears to be a computational model of a
distributed system, where the structure of the system, the types of objects and transformations matter
and collaborate in order to express a certain computation.

Membrane computing has been an umbrella for the proliferation of different variants of membrane
systems. Not only studies investigating relationships between different classes of P systems, but also
software tools supporting them have been considered. The best known tool that covers the most used
P system models has a specification language, known generically as P–Lingua [25], which provides
adequate syntax for each of the variants of P systems supported. P–Lingua aims to keep the syntax as
close as possible to the original models and provides a simulation platform for all these models and a
consistent user interface environment, called MeCoSim [24].

An alternative approach has been considered, by defining a more general membrane system model,
allowing to relatively easily specify the most utilised P system models. This model is called kernel P
systems (kP systems). A revised version of the model and the specification language can be found in
[14] and its usage to specify the 3-colouring problem and a comparison to another solution provided in
a similar context [9], is described in [15]. The kP systems have also been used to specify and analyse,
through formal verification, synthetic biology systems [22, 21].

Kernel P systems are supported by a software framework, kPWorkbench [1, 2], which integrates
a set of related simulation and verification methodologies and tools.

All these classes of P systems deal with non-deterministic behaviour, but in various circumstances,
especially when biological systems are considered, stochastic systems are more appropriate. In this
respect several variants of stochastic P systems have been introduced and utilised to model various
problems in systems and synthetic biology [12]. A variant which is also supported by a simulation and
verification environment is based on Gillespie approach for executing the system [17]. The tool and
some applications are presented in [6].

In this work, we utilise kP systems and stochastic P systems (based on Gillespie approach), together
with the corresponding software platforms developed, in order to model and verify certain properties
of biological systems. The novelty of the approach is given by (a) the methodology that combines
quantitative and qualitative analysis; (b) the modular way of specifying systems very close to the
their informal descriptions; and (c) by the power of the verification method, relying on model checking
techniques, which combines various approaches in order to adequately check the desired properties.
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The chapter consists of five sections. Section 2 introduces the basic concepts related to kernel P
systems and stochastic P systems. Section 3 introduces the AND and OR logic gates. Section 4 discusses
the model described by using stochastic P systems and the modules associated with them. In Section
5 it is presented the verification methodology combining quantitative and qualitative analysis. Finally,
Section 6 draws conclusions.

1.2 P Systems – Basic Definitions

The reader is assumed to be familiar with basic elements of membrane computing, e.g., from [28].
Some basic concepts utilised in the sequel will be introduced. Let A be an alphabet. An word with
elements from A is a sequence containing these elements. The set of all words over A is denoted by
A∗; λ denotes the empty word and A+ = A \ {λ}. A multiset w over A is a mapping, w : A −→ N and
w(a), a ∈ A, defines the number of occurrences of a in the multiset. In the sequel a multiset will be
defined by a word where the order of the elements is not considered.

In this section we will introduce two P system models, a non-deterministic version, called kernel P
systems, and a stochastic one, called stochastic P systems.

1.2.1 Kernel P Systems

A kP system is made of compartments placed in a graph-like structure. Each compartment Ci, 1 ≤
i ≤ n, has a type ti = (Ri, σi), ti ∈ T , where T represents the set of all types, describing the associated
set of rules Ri and the execution strategy, σi, of that compartment. In the sequel, we will present a
simplified version of kP systems – for the full definition we refer to [13].

Definition 1. A kernel P (kP) system of degree n is a tuple

kΠ = (A,µ,C1, . . . , Cn, i0),

where A is a finite set of elements called objects; µ defines the membrane structure, a graph, (V,E),
where V are vertices indicating compartments, and E edges; Ci = (ti, wi), 1 ≤ i ≤ n, is a compartment
of the system consisting of a compartment type, ti ∈ T , and an initial multiset, wi over A; i0 is the
output compartment where the result is obtained.

Each rule r may have a guard g denoted as r {g}. The rule r is applicable to a multiset w when its
left hand side is contained into w and g is true for w. The guards are constructed using multisets over
A and relational and Boolean operators. For example, rule r : ac→ c {≥ a3∧ < b5} can be applied to
the current multiset, w = a5b4c, as it includes the left hand side of r, i.e., ac and the guard condition
is satisfied by w – there are at least 3 a′s and no more than 5 b′s.

In the sequel, we will present the types of rules utilised by kP systems. In the more general definition
of such systems, see [13], there are two main types of rules, rewriting and communication rules and
structure changing rules. The later set of rules is meant to be used when the structure of system,
involving both compartments and links, is changing. In this work, we will be using only rewriting and
communication rules and the definition below will deal with these types of rules.
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Definition 2. A rewriting and communication rule has the form: x→ y {g}, in compartment li, where
x ∈ A+ and y has the form y = (a1, t1) . . . (ah, th), h ≥ 0, aj ∈ A and tj indicates a compartment
type from T – see Definition 1 – with instance compartments linked to the current compartment; if a
link does not exist (the two compartments are not in E) then the rule is not applied; if a target, tj ,
refers to a compartment type that has more than one instance connected to li, then one of them will
be non-deterministically chosen;

Each compartment has an execution strategy for its set of rules that can be defined as a sequence
σ = σ1&σ2& . . .&σn, where σi denotes an atomic component of the form:

• ε, means empty execution strategy – an analogue of a skip instruction;
• r, a rule from the set Rt (the set of rules associated with type t), describes the fact that if r is

applicable, then it is executed ; otherwise, the compartment terminates the execution thread for this
particular computational step and thus, no further rule will be applied;

• (r1, . . . , rn), with ri ∈ Rt, 1 ≤ i ≤ n, describes a non-deterministic choice within a set of rules; one
and only one applicable rule will be executed, if such a rule exists, otherwise this is simply skipped;

• (r1, . . . , rn)∗, with ri ∈ Rt, 1 ≤ i ≤ n, indicates that the rules {r1, . . . , rn} are executed iteratively
an arbitrary number of steps;

• (r1, . . . , rn)>, ri ∈ Rt, 1 ≤ i ≤ n, represents the maximally parallel execution of a set of rules. If no
rules are applicable, then the execution proceeds to the subsequent atom in the chain.

We introduce now the concept of a configuration of a kP system of degree n as being an n-tuple
K = (u1, . . . , un), where ui is a multiset in compartment Ci, 1 ≤ i ≤ n. The initial configuration is
K0 = (w1, . . . , wn). Starting from K0 and using rules from R1, . . . , Rn in accordance with the execution
strategies σ1, . . . , σn, one gets a sequence of configurations. The process of getting a configuration from
another one is called transition. A computation of Π is a sequence of transitions starting from K0. If
the sequence is finite then this leads to a halting computation and the result is read out from i0. In
applications one can consider partial computations and the result is not always restricted to only one
single compartment.

We present now an example of a kP system with two compartments by using first the notations
introduced so far and then its transcription in a machine readable language, called kP–Lingua [11].

Example 1. There are two types t1 = (R1, σ1), and t2 = (R2, σ2), where
R1 = {r1,1 : bb→ (a, t2) {≥ b2}; r1,2 : b→ (b, t1)(b, t1)}, R2 = {r2,1 : a→ (c, t1)(c, t1)} and
σ1 = (r1,1, r1,2), σ2 = (r2,1). One can notice that rule r1,1 has a guard that requires at least 2b’s to
be present in the current multiset. The execution strategies, σ1 and σ2, are non-deterministic choices.
The kP system of degree 2 is given by

kΠ1 = ({a, b, c, d}, µ, C1, C2, 1),

where µ is a graph with two vertices, C1, C2, and an edge between them. The two components are
given by C1 = (t1, w1), C2 = (t2, w2), where w1 = d2b, w2 = d. The initial configuration of the
system is K0 = (d2b, d). The only possible transition allows only the rule r1,2 to be applied in C1

and consequently the next configuration is K1 = (d2b2, d). In this configuration, one can use in C1

either r1,1 or r1,2 (both are applicable) and nothing in C2; hence, one gets either K′2 = (d2b3, d) or
K′′2 = (d2, da), respectively. From K′2 one can continue with either r1,1 or r1,2 in C1 and nothing in
C2. In K′′2 one can only use r2,1 in C2 leading to K′′3 = (d2c2, d), which is a final configuration and we
obtain a halting computation with the result in C1, d2c2.
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This example written in kP–Lingua is:

type t1 {

choice {

>= 2b : 2b -> a(C2) .

b -> 2b .

}

}

type t2 {

choice {

a -> {2c}(C1) .

}

}

C1 {2d, b} (t1) - C2 {d} (t2) .

Above, t1, t2 denote two compartment types, which are instantiated as C1, C2, respectively. C1 starts
with the initial multiset 2d, b and C2 starts with d. The rules of C1 are chosen non-deterministically,
only one at a time – this is achieved by the use of the key word choice. The first rule is fired only
when its guard becomes true. This rule also sends an a to the instance of t2 that is linked. In the type
t2, there is only one rule to be fired, which happens only when there is an a in the compartment C2.

1.2.2 Stochastic P Systems

In the case of stochastic P systems, constants are associated with rules in order to compute their
probabilities. The precise definition is given below. It refers to a class of P systems, called tissue P
systems, where the system structure is defined as a graph of components – a precise formal definition
can be found in [28].

Definition 3. A stochastic P (sP) system is a model consisting of a tissue P system

sP = (O,L, µ,M1, . . . ,Mn, R1, . . . , Rn)

where O is a finite set of objects, called alphabet, denoting the entities involved in the system; L is a
finite set of labels naming compartments; µ is a membrane structure composed of n ≥ 1 membranes
defining the regions or compartments of the system and their connections, forming an arbitrary graph;
Mi = (li, wi), 1 ≤ i ≤ n, is the initial configuration of the compartment or region defined by the
membrane i, where li ∈ L is the label of the compartment and wi ∈ O∗ is a finite initial multiset of
objects; Ri = {ri1, . . . , rimi

}, 1 ≤ i ≤ n, is a set of multiset rewriting rules, of the form: rik : [x→ck y]li ,
where x and y are multisets of objects (y might be empty) over O, representing the molecular species
consumed and produced in the corresponding molecular interaction occurring in the compartment
labelled li. An application of a rule of this form changes the content of the membrane with label li by
replacing the multiset x with y. The stochastic constant ck is used by the Gillespie algorithm [17] in
order to compute the probabilities associated with the rules.

In each compartment of the sP system the execution strategy is based on Gillespie algorithm. Simi-
larly to kP systems, one can define configurations, transitions and computations. Partial computations
are also widely used in this context.
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The model of the sP systems has been considered as the basis of the Infobiotics Workbench [6] where
this is extended with some modularity features allowing a more flexible specification of a system. Each
module has a name and some attributes associated with it. We do not provide the full formal definition
of these modules (for a formal approach see [6, 31]), but we prefer to introduce them through some
examples utilised later in this work.

The unregulated gene expression module, whereby some genes are expressed constitutively and in-
dependently of transcription factors is defined by the module:

UnReg({G,R, P}, {c1, c2, c3, c4}){
G→c1 G+R;
R→c2 R+ P ;
R→c3 ;
P →c4}

This module describes the process of transcribing the gene G into its corresponding mRNA, R, which
in turn is translated into a protein P . The mRNA and the protein can be degraded. The propensities
of these processes are determined by the stochastic coefficients ci, 1 ≤ i ≤ 4. Some variants of this
might appear when more than a protein is involved. The module has the form:

UnRegM({G,R, P1, P2}, {c1, c2, c3, c4, c5, c6}){
G→c1 G+R;
R→c2 R+ P1;
R→c3 R+ P2;
R→c4 ;
P1 →c5 ;
P2 →c6}

When it is assumed that the protein is obtained in one step from the gene, the module is:

UnRegS({G,P}, {c1, c2}){
G→c1 G+ P ;
P →c2}

One can also describe the process of complex formation, when two molecules M1 and M2 form a
more complex molecule M1.M2 and this might be reversible. The module is:

Comp({M1,M2}, {c1}){
M1 +M2 →c1 M1.M2}

A negative regulation of a gene, when a repressor protein R binds reversibly to the gene G prevent-
ing it to produce any protein, is given by:

Neg({R,G}, {c1, c2}){
R+G→c1 R.G;
R.G→c2 R+G}
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1.2.3 Tools

The specifications written in kP–Lingua are supported by a software platform, kPWorkbench, which
integrates a set of tools and translators that bridge several target specifications that we employ for kP
system models, written in kP-Lingua. kPWorkbench permits simulation and formal verification of
kP system models using several simulation and verification methodologies and tools.

The Infobiotics Workbench (IBW) is an integrated software suite of tools to perform in silico exper-
iments for sP models in systems and synthetic biology [6]. This software platform includes simulators
and tools for formal verification of stochastic models.

The IBW tool is aimed at providing support for quantitative (stochastic) analysis of systems,
whereas kPWorkbench is meant to help with qualitative analysis. In this respect, systems are spec-
ified within IBW, by using modularity features and then analysed with the existing tools of this
environment. For qualitative analysis these are then automatically translated into a non-deterministic
version of the system which is then analysed within the kPWorkbench environment.

1.3 Genetic Logic Gates

Genetic logic gates have been considered in various papers, including [4, 34, 30], using various synthetic
biology tools, amongst them GEC [29], Eugene [5] and Proto [3]. In [33, 23], we have studied two basic
logic gates, AND and OR, using the IBW tool for quantitative analysis and kPWorkbench for
qualitative one. Here, we provide a summary of our results.

The genetic parts and designs of these gates are proposed by Beal et al. [4]. Both gates use two
inducers, aTc and IPTG, as input and use GFP as output. aTc and IPTG disable the activities of TetR
and LacI proteins, respectively.

Figure 1.1a illustrates the genetic design of an AND gate, which receives two input signals: aTc and
IPTG. In this system, the transcription factors LacI and TetR are expressed by a gene controlled by the
same promoter. The aTc molecules repress TetR, and IPTG molecules repress LacI, to prevent them
from inhibiting the production of GFP by binding to the corresponding promoter which up-regulates
the expression of GFP. If both IPTG and aTc are set to high, then neither LacI nor TetR can inhibit
the GFP production.

Figure 1.1b illustrates a genetic OR gate, comprising two mechanisms. Each mechanism leads to
the production of GFP, when it is activated. The first mechanism is repressed by LacI while the second
is repressed by TetR. Therefore, GFP can be produced from the former when IPTG is set to high and
from the latter when aTc is set to high.

The stochastic model, in each of the two cases, consists of an sP system with one compartment and
a set of stochastic rules, governing the kinetic and stochastic behaviour of the system. The rewriting
rules and the kinetic constants (taken from [4]) of the devices are described in the Tables (a) AND &
(b) OR of the Annex.

In the next section we will show how the two gates are modelled by using the modular approach
provided by the sP systems and available as part of the IBW specification component.
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Promoter RBS lacI tetR

LacI

TetR

aTcIPTG
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(a) AND gate

Promoter RBS lacI tetR

LacI
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GFP

Prom2 RBS gfp

GFP
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(b) OR gate

Fig. 1.1: Beal et. al.’s genetic devices functioning as an AND and OR gate (taken from [33]).

1.4 Modelling with sP Systems

The sP systems model utilised for each of the two logic gates consists of a one compartment system and
an alphabet of objects including all the species and molecules that appear in the two sets of reactions
listed in Tables (a) AND & (b) OR of the Annex. For expressing the behaviour of each of these systems
we will be using modules as they are supported by the IBW environment. These specifications are also
automatically translated into non-deterministic kP systems and made availale to kPWorkbench.

The AND logic gate fully described by the reactions listed in Table (a) AND can be specified us-
ing modules in a manner that maps better the informal specification above. The rules r1, r2, r3 and
r10, r11, r12 can be embedded into a module UnRegM which expresses the fact that the transcription
factors LacI and TetR are expressed by a gene, but also that the mRNA and the transcription factors
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degrade. Each of the reactions r4 and r5 expresses a complex formation, whereby the aTc molecules
repress TetR, and IPTG molecules repress LacI, respectively. These are captured by Comp modules.
The fact that LacI and TetR inhibit the GFP production (rules r6a, r6b and r7a, r7b) is captured by two
modules describing this negative regulation, Neg. Finally, the GFP production (rules r8, r9) is defined
by a module UnRegS. The complete specification of the AND logic gate using modules is:

UnRegM({gene LacI TetR, mLacI TetR, LacI, TetR}, {k1, k2, k3, k12, k10, k11})
Comp({LacI, IPTG}, {k4})
Comp({TetR, aTc}, {k5})
Neg({LacI, gene GFP}, {k6a, k6b})
Neg({TetR, gene GFP}, {k7a, k7b})
UnRegS({gene GFP, GFP}, {k8, k9})

The OR logic gate is very similar to AND with respect to modelling modules. The first three lines,
using modules UnRegM and Comp twice are the same. As the OR gate uses two mechanisms to
produce GFP then the two Neg modules of the AND gate are replaced by

Neg({LacI, gene GFP1}, {k6a, k6b})
Neg({TetR, gene GFP2}, {k7a, k7b})

and finally, the UnRegS of the AND gate is replaced by two UnRegS modules responsible for producing
GFP.

Having the systems implemented by using modules one can run various simulations with IBW
environment and check their behaviours. The trajectories of both gate dynamics for the four different
input combinations of low and high aTc and IPTG concentrations are shown in Figure 1.2. The graphs
presented show that the gates quickly approach a steady state with output concentrations. These show
that the models implement the desired Boolean logics. Apart from simulations revealing various aspects
of the systems’ behaviour the tools discussed earlier provide more insights into the system by revealing
certain properties or relationships between different components. All these will be investigated in the
next section.

The translation of the sP system into a kP system is obtained automatically by removing the
kinetic coefficients of the former. The kP system obtained can be executed in kPWorkbench by
using the execution strategy corresponding to non-deterministic choice. The simulation of such a non-
deterministic system does not bring any new information about the model, but this specification is
useful for the formal verification performed in the next section.

1.5 P Systems Verification

In this section we briefly present a methodology for verifying P system models using model checking
approaches. This has been developed by looking at quantitative and qualitative results whereby various
model checking tools have been used to investigate properties of different types [22, 20]. In this work we
will be illustrating the use of two model checkers, Prism [19] for quantitative analysis and NuSMV [7]
for qualitative aspects; they are part of the IBW and kPWorkbench platforms, respectively. They
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Fig. 1.2: GFP expression in the AND (left) and (OR) gate over time for the aTc/IPTG input combinations
low-low, low-high, high-low, and high-high (taken from [33]). Error bars denote the standard deviations
of 100 statistically independent samples.

can be directly called from these platforms and the queries can be formulated in a natural language
format [6].

In standard logic gates, any voltage value above a threshold value, such as 3V, is considered as
1. Since there is no such a standard value for genetic Boolean gates, we propose a threshold for this
particular design. To analyse the behaviour of the genetic devices formally, we verify the following
property using Prism:

“What is the likelihood that GFP eventually exceeds the threshold Thr at time t?”

which is expressed in a probabilistic logic (CSL) as

P=?

[
Ft GFP ≥ Thr

]
.

This query returns different results for different parameter values. For example, if we consider the OR
gate, it returns 1 for Thr = 100, t = 1000, and aTc = IPTG = 1000.

When models are built, especially when these are complex, with many species and interactions, it
is essential that one can verify their correctness. In many cases there are chains of reactions leading to
certain results and it is important to check dependabilities and the way they influence certain results.
In our case, both logic gates show certain dependabilities. For instance, one can check that GFP is not
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present initially in the system, but it will eventually appear. One can verify whether GFP will finally
appear in the system, by using the following statement in NuSMV:

“There are pathways in the system that eventually lead to the production of GFP”

EF (GFP > 0).

This property, expressed in CTL, is true, as expected.
We now show how one can check that a certain sequence of events must or might appear in a chain

of reactions. This is illustrated by the relationship between the production of LacI and TetR and the
complex formation of LacI.IPTG and TetR.aTc, respectively. We illustrate now the chain of events
triggered by LacI by using a CTL formula in NuSMV:

“Always the LacI production might eventually lead to the complex LacI.IPTG.”

AG (LacI > 0 ⇒ EF LacI.IPTG > 0)

This property is true, as expected.

1.6 Conclusions

In this paper, we have shown how an unconventional computing paradigm, membrane systems, is
utilised to model and analyse various systems, especially biological systems. In particular, we have
considered kP systems and stochastic P systems, together with the corresponding software platforms
developed, in order to model and verify certain properties of biological systems.

Our approach is novel in the sense that our methodology (i) combines quantitative and qualitative
analysis; (ii) is a modular way of specifying systems, (iii) employs simulation methods to analyse system
dynamics and (iv) integrates various verification methods to adequately check the desired properties.

We are currently working on the next versions of IBW and kPWorkbench tools by incorporating
more methods for specifying, modelling, simulating and verifying biological systems.
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Annex. Tables

(a) AND gate by Beal et al. (taken from [33])

r0a :
k0a→ IPTG k0a ∈ {0, 1000}

r0b :
k0b→ aTc k0b ∈ {0, 1000}

r1 : gene LacI TetR
k1→ gene LacI TetR + mLacI TetR k1 = 0.12

r2 : mLacI TetR
k2→ mLacI TetR + LacI k2 = 0.1

r3 : mLacI TetR
k3→ mLacI TetR + TetR k3 = 0.1

r4 : LacI + IPTG
k4→ LacI-IPTG k4 = 1.0

r5 : TetR + aTc
k5→ TetR-aTc k5 = 1.0

r6a : gene GFP + LacI
k6a→ gene GFP-LacI k6a = 1.0

r6b : gene GFP-LacI
k6b→ gene GFP + LacI k6b = 0.01

r7a : gene GFP + TetR
k7a→ gene GFP-TetR k7a = 1.0

r7b : gene GFP-TetR
k7b→ gene GFP + TetR k7b = 0.01

r8 : gene GFP
k8→ gene GFP + GFP k8 = 1.0

r9 : GFP
k9→ k9 = 0.001

r10 : LacI
k10→ k10 = 0.01

r11 : TetR
k11→ k11 = 0.01

r12 : mLacI TetR
k12→ k12 = 0.001

(b) OR gate by Beal et al. (taken from [33])

r0 − r5 same as the rules r0 − r5 of the AND gate above

r6a : gene GFP1 + LacI
k6a→ gene GFP1-LacI k6a = 1.0

r6b : gene GFP1-LacI
k6b→ gene GFP1 + LacI k6b = 0.01

r7a : gene GFP2 + TetR
k7a→ gene GFP2-TetR k7a = 1.0

r7b : gene GFP2-TetR
k7b→ gene GFP2 + TetR k7b = 0.01

r8 : gene GFP1
k8→ gene GFP1 + GFP k8 = 1.0

r9 : gene GFP2
k9→ gene GFP2 + GFP k9 = 1.0

r10 − r13 same as the rules r9 − r12 of the AND gate


