
Int. Journ. of Unconventional Computing, Vol. 0, pp. 1–18 ©2025 Old City Publishing, Inc.
Reprints available directly from the publisher Published by license under the OCP Science imprint,
Photocopying permitted by license only a member of the Old City Publishing Group.

P Systems and X-Machines – A Survey

MARIAN GHEORGHE1,∗, FLORENTIN IPATE2, SAVAS KONUR1,∗,
MIHAI IONUŢ NICULESCU2, GEXIANG ZHANG3

1School of Computing and Engineering, University of Bradford, UK
2Faculty of Mathematics and Computer Science, University of Bucharest, Romania

email: florentin.ipate@unibuc.ro,ionutmihainiculescu@gmail.com
3School of Automation, Chengdu University of Information Technology

PeopleâĂŹs Republic of China
email: zhgxdylan@126.com

Received September 20, 2025. Accepted October 20, 2025.

The paper is a survey of the main interactions of P systems and X-
machines. Firstly, hybrid models resulting from these interactions are
analysed, showing their computational capabilities. Secondly, testing
methods relying on various X-machine based approaches for applica-
tions using different classes of P systems are described and illustrated
with some examples. Finally, multi-agent system tools using a combina-
tion of features from these two formalisms are presented together with
some problems modelled and simulated with such tools.

Keywords: Membrane computing, P systems, X-Machines, modelling, verifica-
tion, testing, multi-agent systems, tools

1 INTRODUCTION

Membrane computing is a research field initiated around 25 years ago by
Gh. Păun [47, 48]. This is a computing paradigm that is inspired by the
structure and functions of the living cells, becoming a component of the
broader research field of unconventional computing or natural computing.
Its key models are called membrane systems or P systems. The basic mem-
brane system models consist of a number of regions connected in a certain
way and containing multisets of elements and transformation rules acting

∗ Contact author email: m.gheorghe@bradford.ac.uk, s.konur@bradford.ac.uk

1

4_IJUC_Gheorghe_75_SI_V1 1

Marian Gheorghe
People’s

Marian Gheorghe

Marian Gheorghe

Marian Gheorghe
between

2 MARIAN GHEORGHE et al.

upon them. These are inspired by molecular biology entities – compart-
ments, bio-chemical compounds and simple molecules interacting in various
ways either through complex DNA translation or transcription processes or
basic chemical reactions such as oxidation-reduction, hydrolysis, condensa-
tion, and neutralization. These are abstracted into mathematical concepts and
constructs, a network or hierarchy of regions (or membranes), multisets of
objects or strings and transformation and communication rules or more com-
plex cell division or death operations, defining sound and coherent compu-
tational models. A key characteristic of these models is the high parallelism
and distributivity of the interactions of objects, both at the system level and
in each region.

A presentation of the most important membrane computing models is
available from a recent survey paper [51]. The relationships between dif-
ferent variants of P systems and other computational models, such as Petri
nets, process algebras, mobile ambients and X-machines have been reported
in [46].

However, these surveys do not address the relationships between classes of
P systems and X-machines. The first paper exploring this topic investigates
how P systems with replicated rewriting can be modelled by X-machines
(Eilenberg machines) [1].

In this paper, we present hybrid models based on P systems and X-
machines; translating P systems into X-machine models; using P systems
and X-machines in testing software systems based on P system models; tools
based on the interaction of P systems and X-machines.

1.1 Chronological Presentation of Membrane Computing Evolution
Membrane computing started initially as a theoretical computer science
research, aiming to investigate the computational power and complexity of
these models. Various classes of membrane systems (P systems) have been
investigated. These may be classified as cell-like, tissue-like and neural-like
P systems. The first research monograph [45] presents some of these basic
types of membrane systems investigating the computational power of differ-
ent variants, each of them defined by a specific system structure and a set of
interaction rules. These models have been conceived in such a way that most
of them have a maximal computational power, being Turing complete, and
able, in some circumstances, to solve hard problems through the generation
of exponential space in polynomial (very often, linear) time.

It became obvious that the membrane computing paradigm with its many
variants, can solve problems from various areas [10]: molecular biology –
mechanosensitive communication channels, respiration in bacteria and respi-
ration/photosynthesis interaction in cyanobacteria, cell-mediated immunity,
p53 signaling pathways and photosynthesis; computer science – analysis of

4_IJUC_Gheorghe_75_SI_V1 2

Marian Gheorghe

Marian Gheorghe
such as,

P SYSTEMS AND X-MACHINES – A SURVEY 3

a public key protocol, approximate algorithms for NP-complete optimization
problems, computer graphics and parallel sorting algorithms; linguistics –
conversational models and formal semantics, and parsing natural languages;
membrane computing supporting tools.

At the end of the first decade of research in membrane computing a com-
prehensive handbook was published [46] reporting the key achievements
grouped up into different categories, covering the most important theoret-
ical results – catalytic P systems, communication P systems, P automata,
P systems using strings, splicing/tissue/population P systems, conformon
P systems, active membranes, membrane division and creation, P systems
with objects on membranes, spiking neural P systems, metabolic P systems,
probabilistic and quantum P systems, P colonies, time in membrane sys-
tems, semantics of P systems; and some of the most significant applications:
metabolic dynamics, economy process modelling, evolutionary membrane
algorithms, self-assembly, computer science problems. Finally, connections
with other computational models, such as Petri nets, mobile ambients and
X-machines have been presented.

During the second decade, the research focussing on theoretical aspects in
membrane computing community kept a pace comparable to that of the pre-
vious period, but it is clear that it shifted consistently towards more diverse
applications and also deepened the investigations started earlier. Some of
the key application areas where membrane computing modelling has made
an impact are now briefly presented. There have been initiated investiga-
tions in systems and synthetic biology [18] on the role of estrogen in cel-
lular mitosis and DNA damage, molecular diffusion and compartmentaliza-
tion in signal transduction pathways in the study of bacterial chemotaxis,
analysis of dynamical population systems, dynamical structures with reac-
tion kinetics in chronobiology, biochemical networks, analysis of E.coli res-
piratory chain. In these studies have been used membrane computing mod-
els, specific software simulation tools or simulation algorithms such as Info-
biotics Workbench, τ -DPP, P-Lingua and MeCoSim supporting population
dynamics P systems, nondeterministic waiting time algorithm, MetaPLab,
FLAME or model checkers such as ProB in Rodin and PRISM. More com-
plex and real-life applications have been investigated with a broad spectrum
of membrane computing products [58]. First, several key research topics that
have expanded during this period are presented and analysed – evolution-
ary membrane algorithms, numerical P systems and different types of fuzzy
reasoning methods applied to them. These are then used to model radar emit-
ter signal analysis, digital image processing, controller design, mobile robot
path planning, constrained manufacturing parameter optimization problems
and distribution network reconfiguration (with evolutionary membrane algo-
rithms); the diagnosis of electric power systems faults (with numerical P

4_IJUC_Gheorghe_75_SI_V1 3

Marian Gheorghe

Marian Gheorghe
These studies have

4 MARIAN GHEORGHE et al.

systems enhanced with fuzzy reasoning capabilities); the design of mobile
robot controllers (using enzymatic numerical P systems); the study of (real-
life) ecosystems – the scavenger birds, zebra mussel, Pyrenean chamois and
giant panda (with probabilistic P systems). All these investigations requested
not only computational models, but also efficient and robust simulation and
analysis tools. The most significant software implementations running on
various hardware platforms have been presented in [57]. The most significant
software tools presented are P-Lingua and its graphical interface and running
environment MeCoSim, Cyto-Sim, MetaPlab, BioSimWare, Infobiotics Work-
bench, and The Java Environment for Nature-inspired Approaches (JENA).
Implementations on parallel devices, such as GPU, CUDA and FPGA are also
discussed.

In the last years, increasingly, the research interest of the membrane com-
puting community focusses on the theory and applications of a class of mem-
brane computing models derived from spiking neural networks, called spik-
ing neural P systems (shortly, SN P systems). They have become very pop-
ular and widely used in artificial intelligence based problems. Both theoret-
ical results and AI-based applications are discussed in [59]. The theoretical
aspects of SN P systems include the study of their computational power and
complexity. Some of the key AI-based real-life applications of SN P systems,
such as complex optimization, classification, fault diagnosis, medical image
processing, information fusion, cryptography, and robot control topics, are
presented in the above mentioned work.

The area of membrane computing is now, after 25 years, a mature research
field, with its own theory and a rich portfolio of application domains. The
field continues to grow and develop steadily, being present within the land-
scape of unconventional research field [24].

1.2 X-Machines
In mid 1970s Samuel Eilenberg has presented a general approach on uni-
fying various classes of automata into one single model, called X-machine
(or Eilenberg machine) [16]. The model has been then used as a formal
specification mechanism in software engineering by Mike Holcombe [25],
then considered for program testing purposes. Holcombe and Ipate have then
developed a coherent state-based testing method using a special class of X-
machines, called stream X-machines [26,32]. A stream X-machine resembles
a finite state machine (FSM), but with two significant differences: (a) there is
a memory component attached to the machine, and (b) the transitions are not
labeled with simple inputs/outputs, but with functions. These functions pro-
cess input values and current memory values, producing output values and
updating the memory component. The X-machine model is general enough
to simulate other computational models such as FSMs, pushdown automata

4_IJUC_Gheorghe_75_SI_V1 4

Marian Gheorghe

Marian Gheorghe
computing research

P SYSTEMS AND X-MACHINES – A SURVEY 5

and Turing machines. The stream X-machine model has been used especially
for specifying dynamic systems and for testing software systems [26]. It is
the backbone of the agent-based framework FLAME [11] supporting various
simulations, especially in biology [49].

2 COMBINING P SYSTEM AND X-MACHINE MODELS

In this section we present a class of hybrid models obtained by combin-
ing two different classes of membrane systems with X-machines (Eilenberg
machines).

We start with a basic class of P systems by, first, introducing some infor-
mal definitions of the models used in the current and next sections of the
paper.

The P system � of degree m ≥ 1 [45] consists of a finite set V, called
alphabet; an output alphabet T ⊆ V ; the membrane structure μ given as a
tree with m nodes, where each node denotes a membrane; initial strings wi ,

1 ≤ i ≤ m, where wi belongs to membrane i ; Ri , 1 ≤ i ≤ m, are finite sets
of evolution rules of the form A → (u, tar), A ∈ V, u is a string and tar ∈
{here, in, out} – when the rule is applied to a string, it leads to a new string
by replacing A with u and the new string is kept in the current membrane
(tar = here) or sent to one of the direct descendants of the current membrane
(tar = in), arbitrarily chosen, or sent to the parent membrane (tar = out).

A stream Eilenberg (X-)machine [26] is a system consisting of two finite
sets � and �, called input and output alphabets, respectively; a (possibly
infinite) set of memory symbols M ; a set of basic partial relations � on � ×
M × M × �; the next state function F : Q × � −→ 2Q ; the sets of initial
states I and final states T ; the initial memory value is m0.

An Eilenberg P system (EP system, for short) E� [5] is a pair consist-
ing of a membrane structure with m membranes, where the membranes are
labeled in a one to one manner with the elements 1, . . . , m, and an Eilenberg
machine X whose memory is defined by the membranes of μ. X consists of
an alphabet V ; �, Q, F are as in any Eilenberg machine (� is called the ter-
minal alphabet); the initial values occurring in membranes 1, . . . , m are finite
languages over V , denoted M1, . . . , Mm ; the set of basic partial relations �

is given by {�1, . . . , �p}, where �i = (Ri,1, . . . , Ri,m), 1 ≤ i ≤ p, (a tuple
of sets of rules) where Ri, j ⊆ R j and R j , 1 ≤ j ≤ m, is the set of evolution
rules from membrane j ; the set of initial states is I = {q0}, q0 ∈ Q; and all
the states are final, i.e., F = Q.

The EP systems have some similarities with the grammar systems con-
trolled by graphs [12], replacing a one-level structure, which is the cur-
rent sentential form, with a hierarchical structure defined by means of the

4_IJUC_Gheorghe_75_SI_V1 5

6 MARIAN GHEORGHE et al.

membranes. They are also similar to the X-machines based on distributed
grammar systems [19].

One can note that � and m0 from an Eilenberg machine are replaced by
V and M1, . . . , Mm, respectively, in an EP system.

A P system has m sets of evolution rules, each one associated with a mem-
brane. An EP system has the evolution rules distributed across p tuples of sets
of rules �i , 1 ≤ i ≤ p.

A computation in E� is defined as follows: it starts from the initial state
q0 and an initial configuration of the memory defined by M1, . . . , Mm and
proceeds iteratively by applying in parallel rules in all membranes, process-
ing in each one all the strings that can be rewritten: in a given state q and for
an emerging transition from q labeled �i , 1 ≤ i ≤ p, in each membrane j,
1 ≤ j ≤ m, each string is processed by a single rule, from those which are
applicable, if any, from Ri, j .

If several rules may be applied to a string, then one rule and one symbol
to which it is applied are randomly chosen.

The next state, belonging to F(q,�i), will be the target state of the
selected transition. The result (a set of strings containing only symbols from
�), called the language computed by E�, is collected outside of the system,
in the environment, at the end of a halting computation.

The family of languages generated by EP systems with at most m mem-
branes, at most s states and using at most p partial relations (tuples of sets of
rules) is denoted by E Pm,s,p. If one of the parameters is not bounded then it
is replaced by ∗.

In order to study the computational power of this family matrix grammars
(with appearance checking) in the binary normal form [12, 14] are used. The
family of languages generated by matrix grammars (with appearance check-
ing) is denoted by M AT (M ATac). It is known that M AT ⊂ M ATac = RE
[12, 14], where RE denotes the family of recursively enumerable languages.

The following two results are proved in [8].

Theorem 1. (i) E P4,1,1 = M AT ; (ii) E P1,1,∗ = RE .

This theorem shows that EP systems with only one membrane and one
state, but with an unbounded number of tuples of sets of rules compute all
RE languages. What happens when all three parameters are bounded? The
next result shows that by increasing either the number of membranes or the
number of states, EP systems with a bounded number of tuples of sets of rules
can compute all RE languages.

Theorem 2. (i) E P1,3,8 = RE; (ii) E P2,1,7 = RE .

4_IJUC_Gheorghe_75_SI_V1 6

P SYSTEMS AND X-MACHINES – A SURVEY 7

Now, we consider a second class of P systems, called alphabetic flat splic-
ing systems [9], where the rules are different from those previously presented.
Also, a new type of membrane structure is introduced.

A flat splicing rule r has the form (α|γ |β), where α, β and γ are strings
over an alphabet V . For a string x = uαβv, the rule r , applied to it, yields
the string z = uαγβv – this is written as x 	r z. When α, β are symbols
from V or the empty string λ then the rule is called alphabetic flat splicing
rule. A P system using such rules is called alphabetic flat splicing P sys-
tem. The rules have precise target indicators, i.e., each of them has the form
r : (i, (α|γ |β), t), where i and t are the labels of the host membrane and
target membrane, respectively. For such systems the result is obtained in a
designated membrane i0 rather than in the environment. The languages com-
puted (generated) by alphabetic flat splicing P systems are considered, being
defined similar to the case of P systems presented above.

Three types of alphabetic flat splicing P systems are defined and investi-
gated in [9]: Modified Alphabetic Flat Splicing Tissue P Systems (MAFSTs,
for short), Modified Alphabetic Flat Splicing P Systems (MAFSPs, for short)
and Modified Alphabetic Flat Splicing Eilenberg P Systems (MAFSEs, for
short). MAFSTs use a graph as a membrane structure (hence, the presence
of “tissue” in their name), whereas MAFSPs use a tree, as in the case of pre-
viously presented P systems. MAFSEs represent a hybrid model where an
MAFSP and an X-machine are merged as in the case of EP systems. The
family of languages generated by MAFSXs with at most m ≥ 1 membranes
is denoted by M AFSX (m), X ∈ {T, P}. The family of languages generated
by MAFSEs with at most m membranes, at most s states and at most p tuples
of sets of rules are denoted by M AFSE(m, s, p). As usual, when one of the
parameters is unbounded, it is denoted by ∗.

Some relationships between these classes of membrane systems using
alphabetic flat splicing rules have been established [9]:

Theorem 3. (i) M AFST (m) ⊂ M AFST (m + 1), m ≥ 1;
(ii) M AFSP(m) ⊂ M AFST (m), m ≥ 3;
(iii) M AFST (m) ⊂ M AFSE(m, 2, m + 2), m ≥ 1.

For a subclass of MAFSEs, called one flow, the following result has been
proved in [9]:

Theorem 4. For any MAFSX, X∈ {T,P}, with at most m ≥ 1 membranes, �,

there is an MAFSE with at most 2 membranes, at most m states and at most
m2 tuples of sets of rules , �e, such that L(�) = L(�e).

These models are also used to generate the double stairs and diamond
chain code picture languages [9]. Pure Eilenberg P systems have been used
to generate 2D languages [3].

4_IJUC_Gheorghe_75_SI_V1 7

8 MARIAN GHEORGHE et al.

3 TRANSFORMING P SYSTEMS INTO STREAM X-MACHINES

In this section we present three cases of transforming various P systems into
stream X-machines or different types of Communicating stream X-Machines
(CsXMs, for short). The aim of the mapping operations is to provide to these
classes of P systems a set of tools already developed for the X-machine mod-
els – efficient simulators, such as FLAME [11], testing methods [36] and a
broad palette of software engineering approaches [25, 26].

In [1] the process of transforming P systems with replicated rewriting into
stream X-machines and a class of CsXMs using communication matrices [7]
is presented. A P system with replicated rewriting uses strings and the rules
have the format X → (v1, tar1)|| . . . ||(vn, tarn), n ≥ 1. When such a rule
is applied to a string x1 Xx2 one gets n strings x1vi x2, 1 ≤ i ≤ n, which are
sent to the membranes indicated by the target indicators tari . These rules
introduce additional parallelism to the existing parallel behaviour of these
models and finding a suitable X-machine model represents a challenge. In
this respect, in addition to mapping these P systems into standard stream X-
machines, a specific class of CsXMs is selected. This model of CsXM allows
each of the X-machine components to communicate with any of the others by
using the corresponding matrix cells. The complexity aspects regarding the
cost of the parallel computation and communication have been established,
together with estimates for implementing standard operations in distributed
environments, like routing, broadcast, and convergecast.

The P systems with symbol objects using evolution and communicating
rules and dissolution rules, with a partial order amongst them have been
considered to be mapped into a class of CsXMs with ports and channels [37],
where the communication between X-machine components is done through a
channel, which is an unbounded buffer instead of a single cell of the commu-
nication matrix as in [7]. The complexity of the translation process has been
assessed and compared with [1]. It has been shown that this is better than the
complexity of the translation into a standard stream X-machine, but compa-
rable with that of mapping into a CsXM with communication matrices. These
CsXMs with ports and channels are more flexible when operations such as
dissolution and division are considered, and its instances can be formally
verified by a model checker with a set of specific temporal logic operators
referring to the X-machine model [17].

A more complex type of membrane computing models, called kernel P
systems have been mapped into a class of CsXMs where the communica-
tion amongst the stream X-machine components is a combination of the pre-
viously presented models and each component is restricted to a stream X-
machine where the state diagram has no loops [44]. This CsXM model is the
backbone of FLAME framework, an agent-based simulation tool running on

4_IJUC_Gheorghe_75_SI_V1 8

P SYSTEMS AND X-MACHINES – A SURVEY 9

high-performance platforms [11]. This mapping allows to efficiently simulate
large scale kernel P system models [40].

The opposite problem of transforming a stream X-machine or an CsXM
into a P system has been also investigated. A restricted class of CsXMs has
been considered: the memory set associated to every component is finite and
every function processes a symbol from a multiset at any given moment in
time, rather than an input from a stream. A tissue P system [45] has been
the obvious choice for this investigation. The essence of this transformation
consists in mapping every stream X machine component of the CsXM into
a tissue P system membrane. The objects of the tissue P system are obtained
from the states, memory values, input and output symbols and each compu-
tation of a function that links a state, a memory value, and an input symbol
with another state, a new memory value and an output symbol (the number of
such computations is finite) is associated with an evolution or communication
rule. In [39], the formal mapping is provided and a case study is presented
using specific simulation and visualisation tools.

4 P SYSTEMS AND EILENBERG MACHINES WORKING
TOGETHER AS DISTINCT MODELS: THE CASE OF
TESTING

All software applications, as any engineering products, irrespective of their
nature and purpose, are thoroughly tested before being released, installed and
used. Testing appearing everywhere, is part of any technology, and does not
have a substitute. In many hardware or software systems testing is conducted
together with formal verification, especially when a certain formal model is
utilised. In software industry testing is a necessary mechanism to increase the
confidence in the product correctness and to make sure that it works properly.

Testing represents a significant line of research investigated in connection
with P systems in the context of a broad spectrum of applications based on
these models. As already mentioned, there is a substantial work reported on
various topics related to: modelling and analysis of biological systems [10,
18], real-life applications [58], spiking neural P system problems [59] and
many tools running on different hardware platforms [57].

The testing approaches investigated with respect to P system based appli-
cations are black box testing methods which require that for a given specifi-
cation defined as a P system, an implementation of it exists and this will be
tested utilising a test set derived from its specification.

The first testing approach on implementations based on membrane sys-
tems have been developed for the class of cell-like P systems. In this case, a
grammar-like testing method, including rule coverage and context-dependent

4_IJUC_Gheorghe_75_SI_V1 9

10 MARIAN GHEORGHE et al.

rule coverage criteria, has been introduced. Intuitively, the first coverage prin-
ciple means that we have to identify for every rule of the P system model a
computation including the rule. In the second case, the rules are defined in
certain contexts; a special situation is when the context is given by the right
hand side of another rule, which means that the computation should reveal
sequences of rules occurring in successive computation steps.

Formally, the rule coverage is defined as follows: for a rule r : a → v, a
multiset ur covers r if there is a computation xay =⇒ xvy =⇒∗ ur , where
x, y, ur are multisets over the alphabet of the P system. A test set for an
application based on a P system model satisfying the rule coverage principle
is a set of multisets ur covering r for any rule r of the P system.

We illustrate the rule coverage approach with a simple example.
Let �1 be a P system with one compartment, with the alphabet V1

and the set of rules R1 = {r1 : s → ab, r2 : a → c, r3 : b → bc, r4 : b → c}.
Each multiset w, is denoted by a vector of non-negative integer numbers
(|w|s, |w|a, |w|b, |w|c), where |w|x , x ∈ V1, denotes the number of symbol
objects x in w. One can easily observe that T1 = {(0, 1, 1, 0), (0, 0, 1, 2), (0,

0, 0, 2)} is a test set for �1 satisfying the rule coverage criterion.
State based approaches represent powerful techniques for testing using

finite state machine specifications. Given a finite state machine specification
and a “black boxâĂŹâĂŹ implementation for which we can only observe
its behaviour, we want to test whether the implementation under test con-
forms to the specification; this is called conformance testing or fault detec-
tion and a finite set of sequences that solves this problem is called a test
suite. For an implementation derived from a cell-like P system model with
non-cooperative evolution and communication rules a Finite State Machine
(FSM) based testing approach has been introduced in [29], where a finite set
of test sequences satisfying the conformance testing principle is obtained. Of
course, coverage criteria for the test sets can be also considered.

The testing approach provided in [29] uses a set of traces of execution of
the P system model, up to a certain limit. These are used in order to obtain
a Deterministic Finite Cover Automaton. A DFCA of a finite language U is
a deterministic finite automaton that accepts all sequences in U and possibly
other sequences longer than any sequence in U and containing a sequence
from U as a prefix. This DFCA is an approximation of the given P system.

For the previously introduced P system �1 execution traces up to length
4 are considered in [29]. In each step these labels defining a multiset m is
denoted by the symbol (m) belonging to the alphabet of the DFCA. The
sequences of symbols associated to the multisets of labels of rules used in
each step define the finite language U which is used to obtain the DFCA.
The transition function of the DFCA obtained from U is δ1(q0, (r1)) = q1,

4_IJUC_Gheorghe_75_SI_V1 10

Marian Gheorghe

Marian Gheorghe
``black box testing’’

P SYSTEMS AND X-MACHINES – A SURVEY 11

δ1(q1, (r2r3)) = q2, δ1(q1, (r2r4)) = q3, δ1(q2, (r3)) = q2, δ1(q2, (r4)) = q3;
the alphabet, given by the symbols associated to the multisets of rule labels,
is {(r1), (r2r3), (r2r4), (r3), (r4)}. The test set is built based on [27].

More complex types of P systems and with many applications have been
considered for building model based testing. Specific testing methods for
Spiking Neural P systems (SN P systems, for short) [59] and kernel P sys-
tems (kP systems, for short) [21] have been developed based on learning some
classes of stream X-machines.

One way of constructing the required DFCA approximation of a given
system based on observations of its behavior is through learning from queries
[28]. This approach has been extended to stream X-machines and used to
generate test sets to implementations based on SN P systems [30] and then to
those using kP system models [34].

An example from [34] illustrates the process described above. Let a kP
system k�add with four compartments and the following sets of rules
Ri = {ri,1 : a → (a, t3) {= a}; ri,2 : aa → (a, t3)(a, t3) {≥ a2}}, i = 1, 2;
R3 = {r3,1 : a → (t, t4) {= an+m+2}}, R4 = ∅. The execution strategy is
choice, i.e., at most one rule per compartment is executed in each step.
The initial multisets in the four compartments are w1,0 = am+1, w2,0 =
an+1, w3,0 = w4,0 = λ.

The kP system k�add adds the non-negative values m, n ≥ 0, represented
as am+1, an+1, respectively, where a1 is a representation for 0, and produces
the sum of them am+n+2 in compartment C3, which then sends it to C4.

Consider the upper limit used in the construction of the DFCA to be 3.
The labels denoting the rules that appear in each compartment in the finite
computation have the form φ = (ψ1, ψ2, ψ3), where each ψi , 1 ≤ i ≤ 3, is
the label of a rule selected from compartment Ci or no rule, denoted ei . The
number of such labels is at most 3 × 3 × 2, but in fact only half of them
appear in these computations. The learning algorithm produces a stream X
machine approximating the kP systems k�add such that they coincide on
sequences of length at most 3. The symbols that appear on the transitions
of this model are exactly the labels extracted from the traces of execution of
k�add . Based on this stream X-machine model, a test set is generated, which,
in addition to that produced in [29] containing sequences of partial relations,
includes the configurations defined by the multisets to which the relations are
applied and those computed by them.

The following test sequence corresponds to the computation starting with
the initial multisets w1,0 = a2, w2,0 = a3, w3,0 = w4,0 = λ :
[a2, a3, λ](r1,2, r2,2, e3)[λ, a, a4](e1, r2,1, e3)[λ, λ, a5](e1, e3, r3,1)[λ, λ, a4].

Such a test sequence will reveal errors that appear when any of the
rules involved has an error. For example, if r2,1 is wrongly implemented as

4_IJUC_Gheorghe_75_SI_V1 11

12 MARIAN GHEORGHE et al.

r ′
2,1 : a → (a2, t3) {= a} (a typical instance of mutation testing [42]) then the

test result after the second step will be the configuration [λ, λ, a6] which is
different from the value from the test sequence.

Other testing approaches based on P system models are those for identifi-
able P systems [23], using model checkers [31] and search-based testing [13]
– the latest testing approach is not of type “model based”. The class of kP sys-
tem models benefited, through kPWORKBENCH [41], from complementary
model checking and testing validation procedures [20, 33].

5 TOOLS BASED ON THE COMBINED USE OF P SYSTEMS
AND X-MACHINES

A direct consequence of combining in different ways P systems and X-
machines, as discussed in Sections 2 and 4, is (i) the construction of a series
of hybrid models, domain specific languages and tools for multi-agent sys-
tems and (ii) the development of simulation, verification and testing tools on
different platforms.

The research mentioned in (i) is based on hybrid models. Their key ele-
ments, introduced in [38], are the memory and the control structure of the
X-machine model [26] and the dynamic structure connecting the compart-
ments of the population P systems, where links between compartments are
created or destroyed during the evolution of the model [4]. The rigorous
model has been defined in [53] and based on preliminary domain specific
languages for stream X-machines, namely XMDL [35], and population P
systems, PPSDL [52], several formal notations and multi-agent simulation
systems, generically called O P E R AS, have been created [38, 53, 54].

The basic principle behind O P E R AS framework is that each agent can be
defined in terms of two separate characteristics, one related to its behaviour
(modelling its knowledge, actions, and control over its internal states) and the
other one responsible for the reconfiguration of the system structure (adding
and removing agents and links between them). Two preliminary versions
have been created, O P E R ASX X , using both characteristics of the agents
from communicating X-machines, and O P E R ASCC , entirely based on pop-
ulation P systems. A further version, O P E R ASXC , and a slight variation
of it, O P E R ASX P , use a combination of population P systems and X-
machines [54]. A number of multi-agent systems have been modelled and
analysed using these frameworks.

A challenging modelling and simulation project is the autonomous intelli-
gent swarms of satellites proposed for NASA missions that have complex
behaviours and interactions. The emergent properties of swarms are very

4_IJUC_Gheorghe_75_SI_V1 12

P SYSTEMS AND X-MACHINES – A SURVEY 13

complex and powerful, but equally difficult to design and assure that proper
behaviours will emerge. A thorough investigation of formal method tech-
niques for verification and validation of NASA swarm-based missions has
been provided [50]. Among the formal methods considered, X-machines
have showed good properties, but also a drawback referring to the predic-
tive qualities for emergent behaviour of multiple agents. In order to over-
come this issue, a multi-agent formal model based on O P E R ASXC has been
considered in [55]. Individual agents, with their behaviour, have been mod-
elled as communicating X-machines, whereas the relationships among them
have been formalised with primitives inspired by the way the compartments
of population P system models create and destroy links. This O P E R ASXC

approach provides a formal framework for the design and simulation of multi-
agent systems. The formal verification of the hybrid model is achieved by
using an extension of the CTL language [17].

O P E R ASX P has been used to model, as a multi-agent system, the
behaviour of a colony of Pharaoh ants searching for food when the forag-
ing process is based on the pheromone trail produced by forager ants [56].
This framework includes a NetLogo component allowing to visualize the
behaviour of the colony and run different scenarios where the number of ants,
the amount of food and the format of the nest can be varied with respect to
various requirements and constraints.

kPWORKBENCH, a tool allowing the simulation, verification and testing
of kP systems, includes a translator of kP system models into a specific type
of X-machines compatible with FLAME [44], as mentioned in Section 2.
This illustrates the use of different simulation platforms, as mentioned at (ii)
above, and provides ways to select the most appropriate simulation envi-
ronment for a given problem. In [2], a pulse generator synthetic biology
case study is used to assess the performance of the native simulator for kP
systems, provided by kPWORKBENCH, and FLAME sequential simulator,
where the X-machine model is obtained in accordance with the translation
method described in [44]. The experiments show that kPWORKBENCH sim-
ulation tool runs faster than FLAME, but the former saves every step all the
generated data on an external memory. Another experiment assessing the per-
formance of kPWORKBENCH native simulator against FLAME running in
sequential and parallel mode (with 2,3 and 4 processors), by using the subset
sum problem as a benchmark, has been reported in [43]. In this case FLAME
simulator, which now is no longer saving the data after every computation
step, shows a much better performance compared to the kPWORKBENCH

simulator. Also, the experiments show that sequential FLAME runs faster
than parallel FLAME - this is a consequence of the high level of communi-
cation among compartments, as imposed by the solution provided.

4_IJUC_Gheorghe_75_SI_V1 13

Marian Gheorghe

Marian Gheorghe
2, 3

14 MARIAN GHEORGHE et al.

6 FUTURE RESEARCH DEVELOPMENTS

After almost 25 years of research on the interactions between membrane sys-
tems and Eilenberg (X-)machines (the first paper on this subject, [1], has been
published in 2002, but presented at the Workshop on Membrane Computing
in 2001), one can conclude that both the hybridisation process of creating new
models by mixing features of the two initial models, as well as the combined
use of them, are very effective approaches for defining computational models
with interesting characteristics, for providing solutions to various problems
and producing tools supporting their analysis.

The above mentioned research directions show potential for further devel-
opments. The area of combining Eilenberg machines and P systems into new
hybrid models is still active and attractive – [9] and [22] have been recently
accepted for publication. Splicing P systems and 2D array P systems are
likely candidates to produce new hybrid models with Eilenberg machines, as
illustrated by recent developments [3] and [9], respectively. Existing model-
checking techniques may be extended to hybrid models enabling their sys-
tematic formal verification. Automata-learning and reinforcement-learning
methods can be employed to automatically infer and refine hybrid mod-
els based on observed behaviour. The inferred models will then serve as a
foundation for systematic testing and verification. Implementation of parallel
algorithms running on high-performance computers or FPGA/GPU platforms
for hybrid models can be developed to enhance scalability and computational
efficiency. The second line of research has very promising perspectives for
further developments through important applications, such as those based
on spiking neural P systems [59], numerical P systems [15, 60] and other
P system models used in real-life applications [58], where new testing and
verification methods, as illustrated for some basic models in [6], have to be
defined. Generative AI and AI agents for automatic model translation can be
considered for new developments related to these topics.

ACKNOWLEDGMENTS

The paper is dedicated to Academician Gheorghe Păun on the occasion of his
75th birthday, as a token of appreciation for his landmarking contributions
to several branches of theoretical computer science and for introducing the
seminal concept of Membrane Computing that has generated a very fertile
research area.

Florentin Ipate and Marian Gheorghe would like to also dedicate this paper
to Professor Mike Holcombe, who revealed to them the X-machine model
and suggested the research potential of combining this topic with Membrane
Computing.

4_IJUC_Gheorghe_75_SI_V1 14

Marian Gheorghe

Marian Gheorghe
published

P SYSTEMS AND X-MACHINES – A SURVEY 15

The authors thank the anonymous reviewers for their comments that
allowed to improve the final version of the paper. Marian Gheorghe’s and
Savas Konur’s research has been supported by the Royal Society grant
IESR3213176, 2022-2025. Gexiang ZhangâĂŹs research has been sup-
ported by the Sichuan Science and Technology Program (2025YFHZ0103,
2025HJRC0022).

REFERENCES

[1] Joaquín Aguado, Tudor Bălănescu, Marian Gheorghe, Mike Holcombe, and Florentin
Ipate. (2002). P systems with replicated rewriting and stream X-machines. Fundamenta
Informaticae, 49(1):17–33.

[2] Mehmet E. Bakir, Savas Konur, Marian Gheorghe, Ionuţ Niculescu, and Florentin Ipate.
(2014). High performance simulations of kernel P systems. In 2014 IEEE International
Conference on High Performance Computing and Communications, August 2014, Paris,
France, pages 409–412. IEEE.

[3] Somnath Bera, Atulya K. Nagar, Kumbakonam Govindarajan Subramanian, and Gexiang
Zhang. (2024). Pure 2D Eilenberg P systems. Journal of Membrane Computing, 6(4):258–
265.

[4] Francesco Bernardini and Marian Gheorghe. (2004). Population P systems. Journal of
Universal Computer Science, 10(5):509–539.

[5] Francesco Bernardini, Marian Gheorghe, and Mike Holcombe. (2003). PX systems = P
systems + X-machines. Natural Computing, 2(3):201–213.

[6] Radu Traian Bode, Florentin Ipate, and Mihai Ionuţ Niculescu. (2025). A model learning
based testing strategy for numerical P systems. In International Conference on Membrane
Computing, Chengdu, China, September 19–21, 2025. Chengdu University of Information
Technology.

[7] Tudor Bălănescu, Tony Cowling, Horia Georgescu, Marian Gheorghe, Mike Holcombe,
and Cristina Vertan. (1999). Communicating stream X-machine systems are no more than
X-machines. Journal of Universal Computer Science, 5(9):494–507.

[8] Tudor Bălănescu, Marian Gheorghe, Mike Holcombe, and Florentin Ipate. (2003). Eilen-
berg P systems. In Gheorghe Păun, Grezorz Rozenberg, Arto Salomaa, and Claudio Zan-
dron, editors, 3rd International Workshop on Membrane Computing, WMC-CdeA 2002,
Curtea de Argeş, volume 2597 of Lecture Notes in Computer Science, pages 43–57.
Springer Berlin, Heidelberg.

[9] Rodica Ceterchi, Marian Gheorghe, Lakshmanan Kuppusamy, and Kumbakonam Govin-
darajan Subramanian. (2025). Three classes of modified alphabetic flat splicing P systems.
Journal of Membrane Computing, 7(3):296–311.

[10] Gabriel Ciobanu, Gheorghe Păun, and Mario J. Pérez-Jiménez, editors. (2006). Applica-
tions of Membrane Computing. Springer Berlin, Heidelberg.

[11] Simon Coakley, Marian Gheorghe, Mike Holcombe, Swan Chin, David Worth, and Chris
Greenough. (2012). Exploitation of high performance computing in the FLAME agent-
based simulation framework. In 2012 IEEE 14th International Conference on High Per-
formance Computing and Communication & 2012 IEEE 9th International Conference on
Embedded Software and Systems, HPCC-ICESS 2012, pages 538–545.

4_IJUC_Gheorghe_75_SI_V1 15

Marian Gheorghe

Marian Gheorghe
Zhang’s

16 MARIAN GHEORGHE et al.

[12] Erzsébet Csuhaj-Varjú, Jürgen Dassow, Jozef Kelemen, and Gheorghe Păun. (1994).
Grammar Systems – A Grammatical Approach to Distribution and Cooperation. Rout-
ledge.

[13] Ana Ţurlea, Marian Gheorghe, Florentin Ipate, and Savas Konur. (2019). Search-based
testing in membrane computing. Journal of Membrane Computing, 1(4):241–250.

[14] Jürgen Dassow and Gheorghe Păun. (1989). Regulated Rewriting in Formal Language
Theory. Springer Berlin, Heidelberg.

[15] Jinping Dong, Gexiang Zhang, Yangheng Hu, Yijin Wu, and Haina Rong. (2024). An
optimization numerical spiking neural membrane system with adaptive multi-mutation
operators for brain tumor segmentation. International Journal of Neural Systems,
34(8):2450036.

[16] Samuel Eilenberg. (1974). Automata, Languages and Machines. Academic Press.

[17] George Eleftherakis, Petros Kefalas, and Anna Sotiriadou. (2001). Extending temporal
logic to facilitate formal verification of X-machine models. Annals of the University
Bucureşti. Mathematics-Informatics, 50(1):79–95.

[18] Pierluigi Frisco, Mario J. Pérez-Jiménez, and Marian Gheorghe, editors. (2014). Applica-
tions of Membrane Computing in Systems and Synthetic Biology. Springer Cham.

[19] Marian Gheorghe. (2000). Generalised stream X-machines and cooperating distributed
grammar systems. Formal Aspects of Computing, 12(6):459–472.

[20] Marian Gheorghe, Rodica Ceterchi, Florentin Ipate, Savas Konur, and Raluca Lefticaru.
(2018). Kernel P systems: From modelling to verification and testing. Theoretical Com-
puter Science, 724:45–60.

[21] Marian Gheorghe, Florentin Ipate, Ciprian Dragomir, Laurenţiu Mierlă, Luis Valencia-
Cabrera, Manuel García-Quismondo, and Mario Pérez-Jiménez. (2013). Kernel P sys-
tems – Version I. In Eleventh Brainstorming Week on Membrane Computing (11BWMC),
Seville, pages 97–124. Fénix Editora.

[22] Marian Gheorghe, Florentin Ipate, Kumar Kannan, Savas Konur, Lakshmanan Kup-
pusamy, Rodica Lefticaru, Anand Mahendran, and Mihai Ionuţ Niculescu. (to appear).
Spiking neural P systems and kernel P systems. Journal of Membrane Computing.

[23] Marian Gheorghe, Florentin Ipate, and Savas Konur. (2016). Testing based on identifiable
P systems using cover automata and X-machines. Information Sciences, 372:565–578.

[24] Marian Gheorghe, Savas Konur, and Florentin Ipate. (2017). Kernel P systems and
stochastic P systems for modelling and formal verification of genetic logic gates. In
Andrew Adamatzky, editor, Advances in Unconventional Computing, Volume 1: Theory,
pages 661–675. Springer Cham.

[25] Mike Holcombe. (1988). X-machines as a basis for dynamic system specification. Soft-
ware Engineering Journal, 3(2):69–76.

[26] Mike Holcombe and Florentin Ipate. (1998). Correct Systems. Building a Business Pro-
cess Solution. Springer Berlin, Heidelberg.

[27] Florentin Ipate. (2010). Bounded sequence testing from deterministic finite state
machines. Theoretical Computer Science, 411(16–18):1770–1784.

[28] Florentin Ipate. (2012). Learning finite cover automata from queries. Journal of Computer
and System Sciences, 78(1):221–244.

[29] Florentin Ipate and Marian Gheorghe. (2009). Finite state based testing of P systems.
Natural Computing, 8(4):833–846.

[30] Florentin Ipate and Marian Gheorghe. (2022). A model learning based testing approach
for spiking neural P systems. Theoretical Computer Science, 924:1–16.

4_IJUC_Gheorghe_75_SI_V1 16

Marian Gheorghe

Marian Gheorghe

Marian Gheorghe
(2025)

Marian Gheorghe
7(4):437—459

P SYSTEMS AND X-MACHINES – A SURVEY 17

[31] Florentin Ipate, Marian Gheorghe, and Raluca Lefticaru. (2010). Test generation from P
systems using model checking. Journal of Logic and Algebraic Programming, 79(6):350–
362.

[32] Florentin Ipate and Mike Holcombe. (1997). An integration testing method that is proved
to find all faults. International Journal of Computer Mathematics, 63(3–4):159–178.

[33] Florentin Ipate, Raluca Lefticaru, and Cristina Tudose. (2011). Formal verification of
P systems using Spin. International Journal of Foundations of Computer Science,
22(1):133–142.

[34] Florentin Ipate, Ionuţ Mihai Niculescu, Raluca Lefticaru, Savas Konur, and Marian Ghe-
orghe. (2023). A model learning based testing approach for kernel P systems. Theoretical
Computer Science, 966:113975.

[35] Paraskevi Kapeti and Petros Kefalas. (2000). A design language and tool for X-machines
specification. In Dimitrios I. Fotiadis and Stavros D Nikolopoulos, editors, Advances in
Informatics, pages 134–145.

[36] Petros Kefalas, George Eleftherakis, Mike Holcombe, and Marian Gheorghe. (2003). Sim-
ulation and verification of P systems through communicating X-machines. BioSystems,
70(2):135–148.

[37] Petros Kefalas, George Eleftherakis, and Evangelos Keris. (2003). Communicating X-
machines: A practical approach to formal and modular specification of large systems.
Journal of Information and Software Technology, 45(5):269–280.

[38] Petros Kefalas, Ioanna Stamatopoulou, and Marian Gheorghe. (2005). A formal modelling
framework for developing multi-agent systems with dynamic structure and behaviour.
In International Central and Eastern European Conference on Multi-Agent Systems,
CEEMAS 2005, volume 3690 of Lecture Notes in Artificial Intelligence, pages 122–131.
Springer Berlin, Heidelberg.

[39] Petros Kefalas, Ioanna Stamatopoulou, Ilias Sakellariou, and George Eleftherakis. (2009).
Transforming communicating X-machines into P systems. Natural Computing, 8(4):817–
832.

[40] Savas Konur, Mariam Kiran, Marian Gheorghe, Mark Burkitt, and Florentin Ipate. (2015).
Agent-based high-performance simulation of biological systems on the GPU. In 2015
IEEE 17th International Conference on High Performance Computing and Communica-
tions (HPCC), 2015 IEEE 7th International Symposium on Cyberspace Safety and Secu-
rity (CSS) and 2015 IEEE 12th International Conf on Embedded Software and Systems
(ICESS), pages 84–89.

[41] Savas Konur, Laurenţiu Mierlă, Florentin Ipate, and Marian Gheorghe. (2020). kPWork-
bench: A software suit for membrane systems. SoftwareX, 11:100407.

[42] Raluca Lefticaru, Marian Gheorghe, and Florentin Ipate. (2011). An empirical evaluation
of P system testing techniques. Natural Computing, 10(1):151–165.

[43] Raluca Lefticaru, Luis F. Macías-Ramos, Ionuţ Mihai Niculescu, and Laurenţiu Mierlă.
(2017). Agent-based simulation of kernel P systems with division rules using FLAME. In
Alberto Leporati, Grzegorz Rozenberg, Arto Salomaa, and Claudio Zandron, editors, 17th
International Conference on Membrane Computing, CMC 2016, Milan, Italy, July 25-29,
2016, volume 10105 of Lecture Notes in Computer Science, pages 286–306. Springer
Cham.

[44] Ionuţ Mihai Niculescu, Marian Gheorghe, Florentin Ipate, and Alin Ştefănescu. (2014).
From kernel P systems to X-machines and FLAME. Journal of Automata Languages and
Combinatorics, 19(2–4):239–250.

[45] Gheorghe Păun. (2002). Membrane Computing – An Introduction. Springer Berlin, Hei-
delberg.

4_IJUC_Gheorghe_75_SI_V1 17

18 MARIAN GHEORGHE et al.

[46] Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors. (2010). The Oxford
Handbook of Membrane Computing. Oxford University Press.

[47] Gheorghe Păun. (1998). Computing with membranes. Technical report, Turku Centre for
Computer Science.

[48] Gheorghe Păun. (2000). Computing with membranes. Journal of Computer and System
Sciences, 61(1):108–143.

[49] David Rhodes, Mike Holcombe, and Eva Qwarnstrom. (2016). Reducing complexity in
an agent based reaction model – Benefits and limitations of simplifications in relation to
run time and system level output. BioSystems, 147:21–27.

[50] Christopher Rouff, Amy Vanderbilt, Mike Hinchey, Walt Truszkowsk, and James Rash.
(2005). Properties of a formal method for prediction of emergent behaviors in swarm-
based systems. In Panayiotis Bozanis and Elias N. Houstis, editors, Second International
Conference on Software Engineering and Formal Methods (SEFMâĂŹ04), September 28
- 30, 2004, pages 24–33. IEEE Computer Society.

[51] Bosheng Song, Kenli Li, David Orellana-Martín, Mario J. Pérez-Jiménez, and Igna-
cio Pérez Hurtado. (2021). A survey of nature-inspired computing: Membrane computing.
ACM Computing Surveys, 54(1):629–649.

[52] Ioanna Stamatopoulou, Petros Kefalas, George Eleftherakis, and Marian Gheorghe.
(2005). A modelling language and tool for P systems. In Panayiotis Bozanis and Elias N.
Houstis, editors, Panhellenic Conference in Informatics, PCI’05, Volos, Greece, Novem-
ber, 11-13, 2005, pages 375–383. Springer Berlin, Heidelberg.

[53] Ioanna Stamatopoulou, Petros Kefalas, and Marian Gheorghe. (2007). Modelling the
dynamic structure of biological state-based systems. BioSystems, 87(2–3):142–149.

[54] Ioanna Stamatopoulou, Petros Kefalas, and Marian Gheorghe. (2007). OPERAS: a for-
mal framework for multi-agent systems and its application to swarm-based systems. In
Alexander Artikis, Gregory M.P. O’Hare, Kostas Stathis, and George Vouros, editors,
International Workshop on Engineering Societies in the Agents World, ESAW’07, volume
4995 of Lecture Notes in Computer Science, pages 208–223. Springer Berlin, Heidelberg.

[55] Ioanna Stamatopoulou, Petros Kefalas, and Marian Gheorghe. (2007). OPERAS for space:
Formal modelling of autonomous spacecrafts. In Panhellenic Conference in Informatics,
PCI’07, Patras, Greece, May, 18–20, 2007, pages 69–78.

[56] Ioanna Stamatopoulou, Ilias Sakellariou, Petros Kefalas, and George Eleftherakis. (2008).
OPERAS for social insects: Formal modelling and prototype simulation. Romanian Jour-
nal of Information Science and Technology, 11(3):267–280.

[57] Gexiang Zhang, Mario Pérez-Jiménez, Agustín Riscos-NúÃśez, Sergey Verlan, Savas
Konur, Thomas Hinze, and Marian Gheorghe. (2021). Membrane Computing Models:
Implementations. Springer Cham.

[58] Gexiang Zhang, Mario J. Pérez-Jiménez, and Marian Gheorghe. (2017). Real-life Appli-
cations with Membrane Computing. Springer Cham.

[59] Gexiang Zhang, Sergey Verlan, Tinfang Wu, Francis George. C. Cabarle, Jie Xue, David
Orellana-Martín, Jianping Dong, Luis Valencia-Cabrera, and Mario J. Pérez-Jiménez.
(2024). Spiking Neural P Systems: Theory, Applications and Implementations. Springer
Cham.

[60] Luping Zhang, Fei Xu, Dongyang Xiao, Jianping Dong, Gexiang Zhang, and Ferrante
Neri. (2022). Enzymatic numerical spiking neural membrane systems and their appli-
cation in designing membrane controllers. International Journal of Neural Systems,
32(11):2250055.

4_IJUC_Gheorghe_75_SI_V1 18

Marian Gheorghe

Marian Gheorghe
SEFM’04

Marian Gheorghe

Marian Gheorghe
N\’{u}\~{n}ez

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aharoni-Bold
 /Aldhabi
 /Andalus
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Aparajita
 /Aparajita-Bold
 /Aparajita-BoldItalic
 /Aparajita-Italic
 /ArabicTypesetting
 /ARBERKLEY
 /ARBLANCA
 /ARBONNIE
 /ARCARTER
 /ARCENA
 /ARCHRISTY
 /ARDARLING
 /ARDECODE
 /ARDELANEY
 /ARDESTINE
 /ARESSENCE
 /ARHERMANN
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ARJULIAN
 /Batang
 /BatangChe
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /Calibri-Light
 /Calibri-LightItalic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /ComicSansMS-BoldItalic
 /ComicSansMS-Italic
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /DaunPenh
 /David
 /David-Bold
 /DFKaiShu-SB-Estd-BF
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /DokChampa
 /Dotum
 /DotumChe
 /Ebrima
 /Ebrima-Bold
 /EstrangeloEdessa
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EuphemiaCAS
 /FangSong
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /Gabriola
 /Gadugi
 /Gadugi-Bold
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Gautami-Bold
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gisha
 /Gisha-Bold
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Impact
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /IskoolaPota
 /IskoolaPota-Bold
 /JasmineUPC
 /JasmineUPCBold
 /JasmineUPCBoldItalic
 /JasmineUPCItalic
 /KaiTi
 /Kalinga
 /Kalinga-Bold
 /Kartika
 /Kartika-Bold
 /KhmerUI
 /KhmerUI-Bold
 /KodchiangUPC
 /KodchiangUPCBold
 /KodchiangUPCBoldItalic
 /KodchiangUPCItalic
 /Kokila
 /Kokila-Bold
 /Kokila-BoldItalic
 /Kokila-Italic
 /LaoUI
 /LaoUI-Bold
 /Latha
 /Latha-Bold
 /Leelawadee
 /LeelawadeeBold
 /Leelawadee-Bold
 /LevenimMT
 /LevenimMT-Bold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /LucidaConsole
 /LucidaSansUnicode
 /MalgunGothic
 /MalgunGothicBold
 /MalgunGothicRegular
 /Mangal
 /Mangal-Bold
 /Marlett
 /Meiryo
 /Meiryo-Bold
 /Meiryo-BoldItalic
 /Meiryo-Italic
 /MeiryoUI
 /MeiryoUI-Bold
 /MeiryoUI-BoldItalic
 /MeiryoUI-Italic
 /MicrosoftHimalaya
 /MicrosoftJhengHeiBold
 /MicrosoftJhengHeiRegular
 /MicrosoftJhengHeiUIBold
 /MicrosoftJhengHeiUIRegular
 /MicrosoftNewTaiLue
 /MicrosoftNewTaiLue-Bold
 /MicrosoftPhagsPa
 /MicrosoftPhagsPa-Bold
 /MicrosoftSansSerif
 /MicrosoftTaiLe
 /MicrosoftTaiLe-Bold
 /MicrosoftUighur
 /MicrosoftUighur-Bold
 /MicrosoftYaHei
 /MicrosoftYaHei-Bold
 /MicrosoftYaHeiUI
 /MicrosoftYaHeiUI-Bold
 /Microsoft-Yi-Baiti
 /MingLiU
 /MingLiU-ExtB
 /Ming-Lt-HKSCS-ExtB
 /Ming-Lt-HKSCS-UNI-H
 /Miriam
 /MiriamFixed
 /MongolianBaiti
 /MonotypeCorsiva
 /MoolBoran
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MS-UIGothic
 /MVBoli
 /MyanmarText
 /Narkisim
 /NirmalaUI
 /NirmalaUI-Bold
 /NSimSun
 /Nyala-Regular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PlantagenetCherokee
 /PMingLiU
 /PMingLiU-ExtB
 /Raavi
 /Raavi-Bold
 /Rod
 /SakkalMajalla
 /SakkalMajallaBold
 /SegoePrint
 /SegoePrint-Bold
 /SegoeScript
 /SegoeScript-Bold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /SegoeUI-Light
 /SegoeUI-LightItalic
 /SegoeUI-Semibold
 /SegoeUI-SemiboldItalic
 /SegoeUI-Semilight
 /SegoeUI-SemilightItalic
 /SegoeUISymbol
 /ShonarBangla
 /ShonarBangla-Bold
 /Shruti
 /Shruti-Bold
 /SimHei
 /SimplifiedArabic
 /SimplifiedArabic-Bold
 /SimplifiedArabicFixed
 /SimSun
 /SimSun-ExtB
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /TraditionalArabic
 /TraditionalArabic-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga
 /Tunga-Bold
 /UrduTypesetting
 /Utsaah
 /Utsaah-Bold
 /Utsaah-BoldItalic
 /Utsaah-Italic
 /Vani
 /Vani-Bold
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vijaya
 /Vijaya-Bold
 /Vrinda
 /Vrinda-Bold
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [4000 4000]
 /PageSize [504.000 720.000]
>> setpagedevice

