
Chapter 1
Modelling and analysis of E. coli respiratory
chain

Adrian Ţurcanu1, Laurenţiu Mierlă1, Florentin Ipate1,2, Alin Stefanescu1, Hao
Bai3, Mike Holcombe3, Simon Coakley4

Abstract In this chapter we present some results obtained in the study of the bac-
terium E. coli related to its behavior at different level of oxygen in the environment.
The biological model is expressed in terms of different molecules and their reac-
tions. First, an agent-based model of E. coli is implemented in the FLAME frame-
work for multi-agents and some simulation results are given. Each agent is repre-
sented by an X-machine and the model corresponds to communicating X-machines.
Then this model is transformed into a kernel P system. This kernel P system is im-
plemented in the Rodin platform and in Spin and some properties are verified using
the associated model checkers. Formulated using the LTL formalism, the verified
properties refer to the variation of the number of different molecules as a result of
the occurring reactions. Our main contribution is a simplified model of E. coli that
preserves the main properties of the initial model, and can be formally verified using
a model checker.

1.1 Introduction

Membrane computing, a research field introduced in 1998 by Gheorghe Păun, stud-
ies computing devices inspired by the functioning and structure of the living cell,
called P systems [33]. Since the appearance of membrane computing, many vari-
ants of P systems have been defined and investigated, particularly in terms of com-
putational power and their capability to solve computationally hard problems [34].

1 University of Piteşti, Department of Computer Science, Romania
e-mail:adrianturcanu85@yahoo.com, laurentiu.mierla@gmail.com,
alin@stefanescu.eu
2 University of Bucharest, Department of Computer Science, Romania
e-mail:florentin.ipate@ifsoft.ro
3 University of Sheffield, Department of Computer Science, UK
e-mail:{hao.bai, s.coakley}@sheffield.ac.uk,
m.holcombe@epigenesys.co.uk

1

2 Ţurcanu et al.

Introduced in [18], kernel P systems (kP systems), and its reduced variant [20] (skP
systems) represent an unifying framework for P systems which integrates many fea-
tures of existing P systems into an elegant and yet powerful modelling formalism.

In the last years, significant developments have also been made in using P sys-
tems to model, simulate and formally verify various systems [13]. As a consequence,
the idea of automating the evolution of a P system was one of the main concerns
of the membrane computing community and many tools have been developed, as
surveyed in [15]. However, each of these tools came with its own specification
language, and was dedicated to a certain class of P systems. In this context, the
Research Group of Natural Computing, from the University of Seville, developed
P-Lingua [16], a programming language for P systems that became the standard for
their representation. Another useful tool developed by the same research group is
MeCoSim [32], a membrane computing simulator that can be easily adapted to each
family of P systems. Using a P-Lingua definition file of a P system, MeCoSim can
be used for simulations and property extraction.

Formal verification of biological systems has been studied using e.g., rewriting
logic and the Maude tool [9] or PRISM and the associated probabilistic temporal
logic [21] for stochastic systems [11]. More recently, various properties of transi-
tion P systems, P systems with active membranes and kernel P systems have been
verified using different tools like NUSMV [19], SPIN [27] and RODIN [28, 36].

Based on the X-machine formalism [22], FLAME (Flexible Large-scale Agent
Modelling Environment) [1, 35] is a generic agent-based modelling system, which
can be used to develop and simulate applications in many areas. In particular, the
FLAME framework has been proven very successful for modelling and simulat-
ing different biological, economic and social systems. In FLAME, each agent has
a memory that holds variables and evolves according to a transition diagram in
which the transitions are labelled by processing functions. These functions can read
and write to variables in the agent’s memory or can read incoming messages and
write outgoing messages. The agents communicate via messages. One of the great
strengths of FLAME is its modularization and platform independence, which allows
it to be run on parallel supercomputers.

One of the success stories of FLAME is the SUMO (Systems Understanding of
Microbial Oxygen Responses) research project [5], funded by the European research
initiative SysMO (System Biology of Microorganisms), centered around the Es-
cherichia coli (E. coli) bacterium, one of the most studied organism in biology [23].
In particular, the project investigates the behavior of this bacterium related to its
reaction to the level of oxygen in the environment. Using the mathematical models
and simulation results provided by FLAME, SUMO deepened the existing knowl-
edge about the metabolic adaption that occurs in response to changes in oxygen
availability [5].

A number of recent investigations [20, 26] illustrate the expressive power of kP
systems on several case studies, representing known NP-complete problems. This
chapter makes a further step in this direction, by using the kP system as a mod-
elling tool for biological systems. To this end, we show how the X-machine based
models of the E. coli developed in FLAME can be naturally transformed into kP

1 Modelling and analysis of E. coli respiratory chain 3

system models. Furthermore, these kP systems also provide the basis for the imple-
mentation in two modelling languages (Event-B and Promela) and the associated
model checkers, ProB [3, 30] and Spin [4, 24], are used to simulate and verify some
of their properties. In related papers, the probabilistic model checking tool PRISM
was used for formal verification in systems biology for quantitative properties [29]
or stochastic trend formulae [8]. Introduced in [12], the Infobiotics Workbench is
also a powerful computational framework incorporating model specification, sim-
ulation, parameter optimisation and model checking for various systems biology
problems. Finally, BMA tool [10] makes formal methods accessible to biologists by
means of an intuitive visual interface.

The chapter is structured as follows. In the next section we overview the theoreti-
cal models of kP systems and X-machines. We continue by describing E. coli and its
respiratory chain in Section 1.3 and its FLAME simulation in Section 1.4. Section
1.5 shows how to use the kP systems to capture interesting and relevant aspects of
E. coli behaviour. The verification of different properties is implemented using two
different model-checkers in Section 1.6. Conclusions are drawn in the last section.

1.2 Background

In this section we provide the formal definitions of a variant of P systems and of
X-machines.

1.2.1 kP systems

P systems are distributed and parallel computing devices processing multisets of
objects encapsulated into regions delimited by membranes, using various types of
rules (evolution, communication, division and others). Kernel P systems provide an
unifying framework for many features available in various P system variants [18].
In this chapter we will use a simplified version of kernel P systems called simple
kernel P systems [20].

Definition 1. A simple kernel P system (skP system, for short) of degree n ≥ 1 is a
tuple

skΠ = (A,L, IO,C1, . . . ,Cn,µ, i0)

where :

• A is an alphabet containing objects,
• L is a finite set of labels,
• IO is an alphabet, IO⊂ A, associated with the environment,
• C1, . . . ,Cn are the initial compartments of the system; each of them is identified

by a label of L, has initially a multiset over A, and a finite set of rules,

4 Ţurcanu et al.

• µ = (V,E) is an undirected graph, where V ⊆ L are vertices and E the edges, and
• i0 ∈ L∪{0} denotes the output region, i.e., the compartment receiving the result

of a computation.

A skP system (A,L, IO,C1, . . . ,Cn,µ, i0) can be viewed as a set of n compart-
ments C1, . . . ,Cn, interconnected by edges from E of an undirected graph µ . Every
compartment has an associated set of rules that can be of type division, rewriting
or communication. Rules may have guards (necessary conditions) and are applied
in maximally parallel mode. The only restrictions are that at most one division rule
can be applied per step and, when a cell is divided, the division rule is the only
one which is applied for that cell in that step. We describe the guards and the rules
syntax below.

The guards are constructed using multisets over A, relational and Boolean op-
erators. Before defining it, we introduce some notations. For a multiset w over A
and an element a ∈ A, we denote by |w|a the number of a’s occurring in w. Let
Rel = {<,≤,=, 6=,≥,>} be the set of relational operators, γ ∈ Rel a relational op-
erator, an a multiset and r{g} a rule with guard g.

Definition 2. If g is the abstract relational expression γan and the current multiset is
w, then the guard is true for the multiset w if |w|aγn is true.

Abstract relational expressions can be connected by Boolean operators (¬,∧ and
∨) generating abstract Boolean expressions.

Definition 3. If g is the abstract Boolean expression and the current multiset is w,
then the guard denotes the Boolean expression for w, obtained by replacing abstract
relational expressions with relational expressions for w. The guard g is true for the
multiset w when the Boolean expression for w is true.

Definition 4. A guard is defined recursively as:
(i) one of the Boolean constants true or f alse, or
(ii) an abstract relational expression, or
(iii) an abstract boolean expression.

Example. The guard g =≥ a3∧ ≥ b4∨¬> c is true for w if w contains at least 3
a’s and 4 b’s or no more than one c.

The rules can have one the following syntax:

(a) rewriting and communication rule: x→ y {g},
where x ∈ A+, y ∈ A∗. The right hand side y, has the form y = (a1, t1) . . .(ah, th),
where a j ∈ A and t j ∈ L, 1 ≤ j ≤ h, is an object and a target, i.e., the label of
a compartment, respectively, and (ai, ti) 6= (a j, t j), for each 1 ≤ i, j ≤ h, i 6= j.
The target t j, must be either the label of the current compartment, say li, (most
often ignored) or that of an existing neighbour of it ((li, t j)∈ E) or an unspecified
one, ∗; otherwise, the rule is not applicable. If a target t j refers to a label that
appears more than once, then one of the involved compartments will be non-
deterministically chosen. If t j is ∗ then the object a j is sent to a neighbouring
compartment arbitrarily chosen.

1 Modelling and analysis of E. coli respiratory chain 5

Example. If the rule is r : a→ a(b,2)(c,3) {g}, then it is applicable iff the guard
g is true, and, as a result of its application, one object a stays in the current
compartment (we do not use target for it), one object b is sent to the compartment
labelled 2 and one object c is sent to the compartment labelled 3.

(b) membrane division rule: [x]li → [y1]li1 . . . [yh]lih
{g}, where x ∈ A+ and y j =

(a j,1, t j,1) . . .(a j,h j , t j,h j), where a j,k ∈ A, t j,k ∈ L, and 1≤ k≤ h j. In this case, the
compartment li will be replaced by h compartments, with the labels li1 , . . . , lih ;
furthermore, for 1 ≤ j ≤ h, the i j-th compartment will contain the same objects
as li with the exception of x, which will be replaced by y j. Moreover, all the links
of li are inherited by each of the newly created compartments.
Example. If the rule is r : []2→ []21[]22[]23 {g}, then it is applicable iff the guard
g is true, and, as a result, the compartment with label 2 is replaced with 3 com-
partments with the same content as compartment 2.

In our models only rewriting and communication rules will be used. Furthermore,
all such rules are non-cooperative, i.e., only one object appears on the left side of
each rule.

Since we are dealing with the model of a biological system, probabilities are
added to the rules. The idea of adding probabilities to P systems was based on the
intention to keep membrane system theory as close as possible to the biological
reality [31].

We consider that probabilistic rules are complementary, i.e., these can be grouped
into sets (pairs in our case) with the same left side and the sum of the probabil-

ities associated with the rules of each pair being 100%. Thus, if r1 : x
p%−−→ y and

r2 : x
(100−p)%−−−−−−→ z are two probabilistic rules, then rule r1 is applied with a probability

of p% and rule r2 with a probability of (100− p)%. After being associated with the
objects according to their probabilities, rules are applied in a maximal parallel man-
ner in each compartment. (The difference between the original, non-deterministic,
kP system and the probabilistic one is that, at each moment within a maximally par-
allel computation step, whenever more than one rule can be selected, the applied
rule is selected according to its probability rather than non-deterministically.)

1.2.2 X-machines

Introduced in 1974 by Samuel Eilenberg [17], X-machines were proposed as a basis
for a possible specification language by Mike Holcombe in 1988 [22]. They provide
the modelling foundation for the FLAME framework. X-machines are computa-
tional models that can describe a system as a finite set of states, each with an internal
store called memory, and a number of transitions between the states. A transition is
triggered by an input value, produces an output value and may alter the memory. An
X-machine may be modelled by a finite automaton in which the arcs are labelled by
function names (the processing functions).

6 Ţurcanu et al.

Definition 5. An X-Machine is a tuple

XM = (Σ ,Γ ,Q,M,Φ ,F, I,T,m0),

where:

• Σ and Γ are finite sets called input alphabet and respectively output alphabet,
• Q is the finite set of states,
• M is a (possibly) infinite set called memory,
• Φ is the type of XM, a non-empty finite set of function symbols. A basic pro-

cessing function φ : M×Σ −→ Γ ×M is associated with each function symbol
φ .

• F is the (partial) next state function, F : Q×Φ −→ 2Q,
As for finite automata, F is usually described by a state-transition diagram.

• I and T are the sets of initial and terminal states respectively, I ⊆ Q,T ⊆ Q, and
• m0 ∈M is the initial memory value.

Definition 6. A communicating X-machine system [25] with n components is a tuple
Sn = ((XMi)1≤i≤n,R), where:

• XMi = (Σi,Γi,Qi,Mi,Φi,Fi, Ii,Ti,(m0)i) is an X-machine labelled by i, for 1 ≤
i≤ n, and

• R is a relation defining the communication among the components,
R ⊆ {XM1,XM2, . . . ,XMn}×{XM1,XM2, . . . ,XMn}. A tuple (XMi,XM j) ∈ R,
denotes that the X-machine XMi can output a message to a corresponding input
stream of X-machine XM j, for any i, j ∈ {1, . . . ,n} with i 6= j.

The exchange of messages among the components of a communicating X-
machine is achieved by redirecting one component’s function output to be received
as input by a function of another machine.

1.3 General description of E. coli

E. coli is one of the most studied bacterium and the research related to it provided
many fundamental paradigms in biology. It can be easily handled by biologists and
its genetic information and metabolic processes are well understood. Interestingly,
unlike many organisms, E. coli can thrive in environments either with abundant
oxygen or no oxygen.

A system-level study of the mechanism of E. coli responding to oxygen is a key
to understand the respiratory pathways of this bacterium. Based on FLAME, an
agent-based model was introduced to better understand the respiratory chain and to
simulate the activities of relative components, such as oxidases Cyo and Cyd, and
their regulators, Fnr and ArcA. In this model, the expression of Cyd and Cyo in
E. coli are repressed or activated by Fnr and ArcA. An integration of COPASI (a
software application for simulation and analysis of biochemical networks and their

1 Modelling and analysis of E. coli respiratory chain 7

dynamics) makes it possible to calculate the dynamic variation of Cyo/Cyd numbers
using mathematical methods. Compared with the traditional kinetic models, which
consider the system as a macroscopic quantity, the agent-based model represents
every single molecule and enables the activities of agents in an actual spatial re-
gion. This advantage of agent-based model could crucially complement the kinetic
model, for the cases when the latter fails, such as low molecule number or unevenly
distributed molecules.

In this agent-based model, each individual molecule of interest is defined as
an agent with its own parameters, such as position, status etc. According to the
biochemical reaction conditions, these agents could exist within the cellular envi-
ronment and interact with each other. This cellular space can be defined as a 2-
dimensional or 3-dimensional space, in which the molecules may be close to the
membrane or evenly distributed in cytoplasm. All these molecules are capable of
moving through this space and interacting with others according to their interaction
radius. The current agent model consists of the following types of agents: oxygen
(O2 molecules), E. coli cell, Fnr molecules, ArcB molecules, ArcA molecules, Ar-
cBA molecules, Cyo and Cyd molecules. This is a preliminary model, but we are
currently working with a team of biologists on an improved version much closer to
the real biological system.

The FLAME framework allows to define agents in a precise way and stores their
initial specifications in an XML file. On reading this file, the pre-defined agents
are constructed in a virtual space for further activities. Each agent communicates
with the others via message boards. These messages contain information on the
whereabouts and state of the molecule. Together with a random moving algorithm
and pre-defined interaction rules, this information drives the whole model and leads
to a final output. In the current model, the Fnr molecules are divided into three
groups based on their status, including Fnr dimer, Fnr monomer and Fnr dimer
bound to the binding sites on DNA. The mechanism of interaction between Fnr and
oxygen molecule is defined as follows:

• When an oxygen molecule is within a pre-defined reaction distance to an Fnr
dimer, the Fnr dimer is decomposed into two Fnr monomers. If this dimer is
bound to a binding site, the binding site will become unoccupied.

• When two Fnr monomers are within reaction distance, they can be combined
into an Fnr dimer.

• When the distance between a Fnr dimer and an unoccupied binding site is less
than their reaction distance, the dimer will bind to the binding site.

The ArcBA molecules are present as ArcA octamer, ArcA tetramer, ArcA dimer(p),
ArcB and ArcA octamer bound to the binding sites on DNAs. The ArcA octamers
bound to binding sites have a probability of coming off. The ArcB molecules can
be phosphorylated (ArcB P) or dephosphorylated (ArcB), depending on how much
it was exposed to oxygen. The ArcA dimers can also be in these two forms. All
the ArcA octamers and tetramers contain phosphorus. The mechanism of interaction
between ArcBA molecules and oxygen is defined as:

8 Ţurcanu et al.

• When an oxygen molecule is within pre-defined reaction distance to an ArcB,
the ArcB will be de-phosphorylated and then become able to capture phosphorus
from active ArcA dimers, ArcA tetramers and ArcA octamers. When an ArcB has
no oxygen molecule to interact with, the capability of this ArcB of capturing
phosphorus will reduce proportionally by revising its reaction radius.

• When an ArcA octamer is moving into the reaction distance to ArcB, the ArcA
octamer will be de-phosphorylated and decomposed into one ArcA tetramer, one
active ArcA dimer and one inactive ArcA dimer.

• When an ArcA tetramer is moving into the reaction distance to ArcB, the ArcA
tetramer will be de-phosphorylated and decomposed into one active ArcA dimer
and one inactive ArcA dimer.

• When an active ArcA dimer is moving into the reaction distance to ArcB, the
ArcA dimer will be de-phosphorylated.

• When an inactive ArcA dimer is moving into the reaction distance to ArcB P, the
ArcA dimer will be phosphorylated.

• When two active ArcA dimers are within their reaction distance, they can be
combined into an ArcA tetramer.

• When two ArcA tetramers are within their reaction distance, they can be com-
bined into an ArcA octamer.

• When one ArcA octamer is within its reaction distance to an available binding
site, the ArcA octamer will bind to the binding site.

1.4 FLAME simulations of E. coli respiratory chain

As we stated before, the E. coli FLAME model is based on agents corresponding to
the molecules. At every step in the simulation, each molecule must change its loca-
tion (move) according to predefined rules. The size of the molecules is assumed to
be sufficiently small that collision between them can be neglected in the movement
process.

Each agent is represented by an X-machine whose memory contains an ID, the
type of the agent, the physical location and its state. The behavior of each molecule
is modelled in the rules of the corresponding agent: namely, with what molecules
it can interact, and what distance is necessary for this interaction to occur. Agents
communicate by sending and receiving messages containing values from their mem-
ory or announcing their availability to interact. Each agent contains a function that
calculates the distance to all the other agents by using its coordinates and the coordi-
nates received from other agents through messages. Besides the criteria on proxim-
ity (i.e., the calculated distance is less than the pre-defined interaction radius), two
molecules interact if they are in a state that allows interactions. Each X-machine also
contains functions that compute the total number of molecules of that type, move
the molecules, send availability to other agents or destroy the agent if it is consumed
in a reaction. These functions also change the state of the X-machine accordingly.
Thus, the model corresponds to a communicating X-machine.

1 Modelling and analysis of E. coli respiratory chain 9

Fig. 1.1 Visual simulation of E. coli in FLAME: the cell (left side) and a zoomed-in snapshot of
its membrane (right side)

Since we are interested only in some of the results of the FLAME simulations,
in this section we consider a simplified version of E. coli cell, with only eight
molecules types: dimers, regenerated dimers, monomers, oxygen, dimers bound
to binding sites, Cyo proteins, Cyd proteins, binding sites, but without the ArcBA
molecules. Note also that FLAME provides visualisation and animation capabili-
ties, as seen in Figure 1.1, but we do not insist here on these aspects.

Oxygen molecules enter the cell through the membrane where a large amount
of them are consumed by the oxidases (Cyo or Cyd proteins). Those which luckily
get into the cell (about 1% of them) react with the Fnr dimers and generate Fnr
monomers. Two Fnr monomers getting close enough could react and regenerate a
Fnr dimer. The Fnr dimer which was already bound to binding sites can also be
deactivated by oxygen molecules and leave the binding site. Also, Fnr dimers can
bind to available binding sites when they get close enough.

Initially, the cell is considered to be in an anaerobic respiration state (no oxygen
in the cell), and the values of the molecules are: 150 dimers, 1 monomer, 35 dimers
bound to binding sites, 200 Cyo proteins, 200 Cyd proteins, 35 binding sites. In these
conditions, FLAME can be used to simulate the reaction in the cell at different levels
of oxygen, e.g., 100, 200, or 300 molecules. Figure 1.2 provides the simulation
results for 100 molecules of oxygen over 10,000 iterations.

Besides the relation between the numbers of oxygen, Fnr dimer and Fnr monomer
molecules, more interesting results are obtained for the model that also contains the
ArcBA system. These are related to:

• the number of ArcA octamer, ArcA tetramer, ArcA dimer and ArcB (phosphory-
lated and non-phosphorylated);

10 Ţurcanu et al.

Fig. 1.2 Trend of molecule numbers with 100 oxygen molecules over 10,000 iterations

• the variation of the numbers of Fnr dimer and ArcA octamer which are bound
to the binding sites, as these would determine the gene regulation and protein
production.

So, as this model is currently used for simulation of biological processes, the
number of the molecules (in biology, the concentration of certain gene regulator) is
what the experiments are focusing on. More details on using FLAME for biological
models, including the E. coli respiratory chain, can be found in [23].

1.5 A kernel P system corresponding to E. coli

In this section, we outline the way in which the previous X-machine based model
is transformed into a kernel P system of degree 2 (kΠ). The latter model is then
used in the next section to formally verify some properties and simulate its behavior
using the model checkers ProB and Spin. Due to the limitations of the corresponding
modelling languages (e.g., the well-known state explosion problem) we considered
a simplified model described below.

First of all, we split the E. coli cell into sectors (of circles) and we associate
to each molecule a sector, depending on its coordinates. Thus, the objects of our
P systems are pairs (l,s), where l is the label of the object and s is the corre-
sponding sector. The idea of using topological spaces as control mechanisms for
rule applications, in addition to the membranes themselves (thus offering a higher
level of granularity), was introduced in [14]. As a consequence, the alphabet of kΠ

is: V = {(Oxyi,si) | i = 1..noOxy} ∪ {(Cydi,si) | i = 1..noCyd} ∪ {(Cyoi,si) | i =
1..noCyo}∪{(Dimi,si) | i= 1..noDim}∪{(BDimi,si) | i= 1..noBDim}∪{(BSitei,si) |

1 Modelling and analysis of E. coli respiratory chain 11

i = 1..noBSites}∪{(Moni,si) | i = 1..noMon}, where Oxy corresponds to the Oxy-
gen molecules, Dim corresponds to the Dimers, BDim corresponds to the dimers
bound to binding sites, BSite corresponds to the binding sites, Mon corresponds to
the monomers and noX is the number of molecules of type X .

We assume that two molecules react only if they are in the same sector.
Then, the rules associated with the first compartment are:

• rewriting and communication rules corresponding to oxidations and oxygen
transfer respectively:

(Oxyi,si)(Cyo j,s j)
p=99%−−−−→ λ {si = s j}

(Oxyi,si)(Cyo j,s j)
p=1%−−−→ [(Oxyi,si)]2(Cyo j,s j) {si = s j}

(Oxyi,si)(Cyd j,s j)
p=99%−−−−→ λ {si = s j}

(Oxyi,si)(Cyd j,s j)
p=1%−−−→ [(Oxyi,si)]2(Cyd j,s j) {si = s j}

• movement rules:
(Oxyi,si)→ (Oxyi,s j) {s j = si−1 | s j = si | s j = si +1}
(Cyoi,si)→ (Cyoi,s j) {s j = si−1 | s j = si | s j = si +1}
(Cydi,si)→ (Cydi,s j) {s j = si−1 | s j = si | s j = si +1}

Probabilities associated with the above rules are required because, as we specified
in the previous section, just about 1% of the oxygen molecules get into the cell.
Thus, an oxygen molecule Oxyi situated in a sector si in the first compartment is
transferred in the second compartment with a probability of 1% or react with an
oxidant situated in the same sector with a probability of 99%. These probabilities
do not appear explicitly in the FLAME model because the oxidations occur more
frequently due to the molecules location (the oxidases Cyo and Cyd act like a barrier
for the oxygen).

The second compartment has the following rewriting rules:

• reactions between a dimer and an oxygen resulting two monomers
(Oxyi,si)(Dim j,s j)→ (Monk,si)(Monl ,si) {si = s j}

• reactions between a bounded dimer and an oxygen resulting a dimer and a bind-
ing site
(Oxyi,si)(BDim j,s j)→ (Dimk,si)(BSitel ,si) {si = s j}

• reactions between two monomers resulting a dimer
(Moni,si)(Mon j,s j)→ (Dimk,si) {si = s j}

• reactions between a dimer and a binding site resulting a bounded dimer
(Dimi,si)(BSite j,s j)→ (BDimk,si) {si = s j}

• movement rules:
(Oxyi,si)→ (Oxyi,s j) {s j = si−1 | s j = si | s j = si +1}
(Dimi,si)→ (Dimi,s j) {s j = si−1 | s j = si | s j = si +1}
(Moni,si)→ (Moni,s j) {s j = si−1 | s j = si | s j = si +1}
(BDimi,si)→ (BDimi,s j) {s j = si−1 | s j = si | s j = si +1}
(BSitei,si)→ (BSitei,s j) {s j = si−1 | s j = si | s j = si +1}

12 Ţurcanu et al.

For all the above rules, guards are used to impose the constraints that two
molecules react iff they are in the same sector (si = s j) and, when moving, each
molecule can remain in its sector (s j = si) or can move into one of the neighboring
sectors (s j = si−1 or s j = si +1).

Using these ideas and the particularities of each language, we constructed Event-
B and a Promela models of kΠ , and used them for formal verification. The obtained
results are given in the next subsections.

1.6 Modelling, simulation and verification

1.6.1 Implementation in Event-B for ProB

Introduced by J.-R. Abrial [6], Event-B is a formal modelling language used for
developing mathematical models of complex systems with a discrete behavior. It is
supported by a platform called Rodin that integrates theorem-proving, model check-
ing (ProB), and animation facilities.

The Event-B model of the kernel P system representation of E. coli described in
the previous section is based on functions, operations with sets and non-deterministic
assignments. Thus, for every set of molecules, we consider a partial function be-
tween a set of labels and the set of sectors. In the initialization event, every molecule
initially in the E. coli cell is associated with its corresponding sector. The model con-
tains an event for every reaction (rule), with the guards asking to the reactants to be
in the same compartment, and the actions modifying the corresponding functions
accordingly.

As an example, the event corresponding to the rule
(Oxyi,si)(Dim j,s j)→ (Monk,si)(Monl ,si) {si = s j} is:

Event DimerOxygen
any x, y, z1, z2
where
guard1: x ∈ dom(Oxy)
guard2: y ∈ dom(Dim)
guard3: Oxy(x) = Dim(y)
guard4: z1 ∈ N\dom(Mon)
guard5: z2 ∈ N\dom(Mon)
guard6: z1 6= z2
then
action1: Mon := Mon∪{z1−>Oxy(x),z2−>Oxy(x)}
action2: Oxy := Oxy\{x−>Oxy(x)}
action3: Dim := Dim\{y−>Dim(y)}

So, if the oxygen molecule x and the dimer y are in the same compartment
(guard3), then two new monomers (z1 and z2) are produced and added to the
monomers set (action1). Then, the reactants are consumed (action2 and
action3). The events for the other reactions are quite similar.

1 Modelling and analysis of E. coli respiratory chain 13

Probabilities associated with some rules are implemented using a random number
generator, e.g., a random number positive integer N is generated and the rule with
the probability of 1% is applied if N is divisible by 100 and the complementary rule,
otherwise.

A different type of event is the one in which the molecules are moving. We re-
mind that any molecule can non-deterministically remain in its sector or can move
into one of the neighbouring sectors.

One of main problems in model checking is the state space explosion. In order
to mitigate this, we considered in our model a variable called state with three possi-
ble values: Reacting, Moving and Crash. The system is usually in one of the states
Reacting or Moving. The state Crash is considered in order to keep the number of
configurations under control. When the system reaches a number of steps (Max),
then its state becomes Crash and the verification stops. We considered in our exper-
iments different values for Max, depending on the complexity of the property.

The results of verifying different properties based on this Event-B model are
provided in Subsection 1.6.4.

A very important Event-B concept is refinement, which allows a model to be de-
veloped gradually [7]. A refined model contains more details about the system than
the initial model and it is obtained by refining machines or extending contexts. Using
this technique we can add to the previous Event-B model of E. coli the ArcBA sys-
tem, i.e., variables corresponding to the ArcBA molecules and events corresponding
to the reactions between them. We describe in the following how the refined model
is obtained.

As in the initial model, we consider a partial function between a set of labels and
the set of sectors for every set of ArcBA molecules. The initialization event has to
be refined, associating to every new molecule the corresponding sector. The refined
model contains seven new events, corresponding to the seven reactions that involve
ArcBA molecules described in Section 1.3. Each of these is similar to those in the
initial model. The event dedicated to molecules movement is also refined, the ArcBA
molecules being also able to remain in the same sector or to move in a neighboring
one. Even if the limitations of ProB, due again to state explosion, do not allow us to
verify significant properties for the refined model, refinement proves to be an useful
technique in building Event-B models of complex systems.

1.6.2 Implementation in Promela for Spin

This subsection describes the Promela implementation of the kP system model for
E. coli. A mature model checking tool, Spin has been also successfully used in
the context of membrane computing for verifying various types of P systems [27],
including kernel P systems [20].

Although computationally equivalent with the investigated kP system model, the
Promela implementation takes advantage of the power and flexibility of its specific
modelling language constructs. For instance, a molecule is defined by using the type

14 Ţurcanu et al.

definition where the specific features are the sector where the molecule finds itself
and a flag denoting whether it is still active or consumed.
typedef Molecule {
int sector;
bool isConsumed = true; }

Using this construct, each molecule type is assigned a global array representing
the set of molecules of the same type.

The reactions between specific molecules are modelled using Promela macro-
definitions. For instance, the kP system rule

(Moni,si)(Mon j,s j)→ (Dimk,si){si = s j}

is computationally equivalent with the following Promela code:
inline MonomerMonomer() {
skip;
d_step {

int x, y, foundX, foundY;
bool found;
found = false;

for(x: 0..MaxMonCount-1) {
for(y: 0..MaxMonCount-1) {

if
:: !found && Mon[x].isConsumed == false && Mon[y].isConsumed ==

false && Mon[x].sector == Mon[y].sector && x != y ->
found = true; foundX = x; foundY = y;

:: else -> skip;
fi; } }

if
:: found ->

createNewDim(Mon[foundX].sector);
Mon[foundX].isConsumed = true;
Mon[foundY].isConsumed = true;

:: else -> skip;
fi;
skip; } }

Another well-suited Promela feature for E. coli modelling is the nondeterministic
control statement. Throughout the model, nondeterministic guarded commands are
used for simulating random molecule assignment to regions, molecule movement
and reaction triggering. For instance, the change in position of Fnr dimer molecules
are modelled using the following macro definition:

inline moveDim() {
int index;
for(index: 0..MaxDimCount-1) {
if
:: Dim[index].isConsumed == false ->
if
:: true && Dim[index].sector > 0 -> Dim[index].sector--;
:: true -> skip;
:: true && Dim[index].sector < MaxSectorCount -> Dim[index].sector++;
fi;

:: else -> skip;
fi; }

index = 0; }

1 Modelling and analysis of E. coli respiratory chain 15

Fig. 1.3 Trend of molecule numbers with 100 oxygen molecules over 800 iterations: in Event-B
(left) and in FLAME (right)

All the above macros are wrapped up in a scheduler process which is responsible
for evolving the system from an initial configuration to a final one, with respect to a
predefined number of steps. At each step, random molecule movement and reaction
triggering is issued in order to simulate the nondeterministic behavior of E. coli
components.

1.6.3 Simulation results

In this subsection we provide some simulation results obtained for the Event-B and
Promela models of E. coli, by comparison with the FLAME simulation results.

The number of molecules of type X is denoted as noX . As for the FLAME
model, the initial values of the molecules are: noDim = 150, noMon = 1, noBDim =
noBSite= 35, noCyd = noCyo= 200. In these conditions, ProB can be used to simu-
late the events corresponding to the reactions in the cell at different levels of oxygen.
Figure 1.3 provides an average of simulation results for 100 molecules of oxygen
over 800 iterations. Although the current limitations of ProB do not allow us to sim-
ulate more steps in the evolution of the Event-B model, Figure 1.3 shows a similar
variation of the molecule numbers for both models. The small differences between
the two graphs are due to the approximations made in the kernel P system model.

Besides the Event-B simulations, a series of simulations have been conducted
using the Promela model and Spin model checking tool, using the same initial
configuration of molecule numbers and different levels of oxygen. The trend of
molecule numbers was similar as for the simulations conducted using the Event-B
and FLAME models. However, compared to ProB, Spin was able to run more itera-
tions and performed better in terms of execution time and memory requirements.

16 Ţurcanu et al.

1.6.4 Verification results

We present now the different properties that we verified, mainly checking how the
number of different molecules evolves during the cell reactions.

We start again with the Event-B model and ProB model checker. In the Event-
B model, we introduced variables counting the number of molecules of each type,
denoting again with noX the number of molecules of type X . Initially, we considered
noOxy = noCyd = noCyo = 100, noMon = 1, noDim = 75, noBdim = noBSites =
18.

Properties verified with ProB can be formulated using the LTL (linear temporal
logic) formalism. We give some of these properties and the result given by the model
checker in the following:

• G{noMon < 3 or state = Crash}; the model checker returns a counterexample
so, in some situations, a dimer is divided in two monomers before reaching the
state Crash.

• G{noMon < 7 or state =Crash}; no counterexample found, so the insertion rate
of oxygen in the second compartment is very low.

• G{noBdim > 17}; the model checker returns a counterexample so the bounded
dimers are sometimes involved in reactions.

Unfortunately, the current limitations of ProB do not allow us to verify more
complicated properties or to increase the number of molecules of each type. Our
future work will concentrate on improving these aspects. All the above properties
were also verified with Spin, obtaining the same results. More than that, as we see
below, the results obtained with the Spin model checker compensate for some cases
not tackled by ProB.

In Spin, we have also used LTL to specify the investigated properties. In order
to conduct the verification, we must take into account that the base model is a kP
system and the properties must be verified in the context of a P system state, after
the maximally parallel application of the rules in each compartment, and not in
every state of the Promela model. In order to accomplish this, a special boolean
variable, called isPSystemStep, is used for identifying P system states. This variable
is included in the LTL formulae in order to instruct Spin to consider only states
where the configuration reaches a relevant point in the system execution.

The following investigations have been conducted using an initial configuration
of noCyo= 200, noCyd = 200, noDim= 150, noMon= 1, noBdim= 35, noBSites=
35, and the number of oxygen molecules varying between 100, 200 and 300, aiming
to verify the relation between the number of different molecules and the evolution
of the system after some key points in the reaction process:

• F (isPSystemStep and nrOxy = 0) − using an initial configuration of noOxy =
100, after 500 steps, noOxy will eventually decrease to 0.

• G ((isPSystemStep and noMon ≤ 2 ∗ noDim) or !isPSystemStep) − with initial
noOxy = 300, after 500 steps, the number of Fnr monomers will be at most half
the number of Fnr dimers.

1 Modelling and analysis of E. coli respiratory chain 17

• G (!(noOxy = 0 and prevNoOxy = 0) or noMon≤ prevNoMon or !isPSystemStep)
− after the point when noOxy = 0, no Fnr monomers will be produced, with an
initial value of nrOxy = 100 and 200 execution steps.

• G (!(noOxy = 0 and prevNoOxy = 0) or noBSites≤ prevNoBSites or !isPSystemStep)
− with an initial configuration of nrOxy = 100 and 200 execution steps, no more
binding sites will become available after the point when noOxy = 0.

• G (!isPSystemStep or !(noOxy = 0 and prevNoOxy = 0 and noBSites = 0 and
prevNoBSites = 0) or noBDim = prevNoBDim) − after reaching the state when
noOxy = 0 and noBSites = 0, the number of bounded dimer molecules will remain
unchanged, for an initial noOxy = 200, and 1,000 execution steps.

• G (!isPSystemStep or !(noOxy = 0 and prevNoOxy = 0) or noBDim≥ prevNoBDim)
− using initial 100 oxygen molecules, after 200 steps, the number of bounded
dimer molecules will remain the same or at most increase, after reaching the
state when noOxy = 0.

• G (!isPSystemStep or (noOxy = 0 → F (noBDim = 70 and isPSystemStep))) −
for the given configuration, all the existent binding sites will eventually become
occupied, after the point when all the oxygen will be consumed, for initial noOxy
= 100 and 1,000 execution steps.

For the set of properties for which a counterexample was issued, the verification
time was up to 3 minutes. On the other hand, for the remaining properties, the time
varied between 30 and 40 minutes, depending on the number of iterations and the
complexity of the property.

The previous results were obtained by running the models on an Intel Xeon CPU
with a speed of 2.4 GHz and 8 GB of RAM.

1.6.5 Event-B vs. Promela

As detailed in the previous subsections, the conducted simulations and verifications
were supported by modelling the E. coli processes into Event-B and Promela formal
specification languages and taking advantage of their mature tool support, Rodin
and Spin, respectively. Despite both providing powerful modelling capabilities, the
two languages are basically very different in their modelling approaches. Event-B
models are abstract state machines in which transitions between states are imple-
mented as events. An event is a state transition which is specified in terms of guards
and actions. Guards are necessary conditions for an event to be enabled. Actions
describe how the occurrence of an event modify some of the variables of the model.
On the other hand, Promela provides a powerful set of instructions for describing
concurrent processes and inter-process communications.

Each model takes advantage of their corresponding language constructs for im-
plementing the necessary functionality. Having a formalism based on the set the-
ory, the Event-B model uses functions, sets and set operators as building blocks
for specifying the molecule evolution rules. The Promela model implements the

18 Ţurcanu et al.

corresponding functionality as a scheduling process for synchronizing and running
a maximum number iterations for evolving the E. coli molecules starting from a
given initial configuration. The non-deterministic conditional and cycling instruc-
tions available in Promela recommends it as a suitable specification language for
modelling the non-deterministic behavior of the different molecules.

Despite the fact that both languages proved suitable modelling capabilities for
in-silico E. coli simulations, the verification and simulation tasks performed better
in case of Spin in terms of complexity of the properties being verified, memory and
time, recommending it once again and increasing the confidence for being a leading
model checking tool in its class.

1.7 Conclusions

A constant concern of biologists, the bacteria E. coli has an interesting behavior in
relation to the level of oxygen in the environment. In this chapter, we built a (sim-
plified) kernel P system model based on the FLAME model of E. coli and we com-
plemented simulations with formal verifications that can check various patterns of
behaviour on the model. For instance, such verification can provide ”sanity checks”
on the model, which should increase the confidence of modellers and biologists that
the models behaves as expected. Then, the kernel P system was implemented in two
modelling languages, Event-B and Promela, and simulation results show that the
kP system is consistent with the original FLAME model. Using the two implemen-
tations and the associated model checkers, several properties, formulated using the
LTL formalism, were verified. Event-B proved to be more convenient for modelling,
while Spin was more efficient for simulation and verification. The models and re-
sults used in this chapter are uploaded on the web page of the MuVeT project [2].

In order to complement our approach, we are currently investigating invariant
property generation (using a tool called Daikon), which should help biologists to
build a good list of properties to be verified on the model, thus increasing the qual-
ity of the used model. Our future work will also concentrate on finding strategies to
verify more complicated properties using the model checkers, developing the model
by adding the ArcBA molecules, and applying similar methodology to other biolog-
ical entities.

Acknowledgements This work was partially supported by the Romanian National Authority for
Scientific Research, CNCS-UEFISCDI, via MuVeT project [2], code PN-II-ID-PCE-2011-3-0688.

References

1. FLAME web site. http://flame.ac.uk.
2. MuVeT web site. http://muvet.ifsoft.ro/e-coli.html.
3. ProB web site. http://www.stups.uni-duesseldorf.de/ProB.

1 Modelling and analysis of E. coli respiratory chain 19

4. Spin web site. http://spinroot.com.
5. SUMO project. http://sysmo-sumo.mpi-magdeburg.mpg.de/trac/wiki/

public.
6. J.-R. Abrial. Modeling in Event-B. System and software engineering. Cambridge University

Press, New York, USA (2010).
7. J.-R. Abrial, S. Hallerstede. Refinement, decomposition, and instantiation of discrete models:

Application to Event-B. Fundamenta Informaticae, 77, (2007), 1–28.
8. O. Andrei, M. Calder. Trend-based analysis of a population model of the AKAP scaffold

protein. Transactions on Computational Systems Biology, 7625, (2012), 1–25.
9. O. Andrei, G. Ciobanu, D. Lucanu. A rewriting logic framework for operational semantics of

membrane systems. Theoretical Computer Science, 373, 3, (2007), 163–181.
10. D. Benque, S. Bourton, C. Cockerton, B. Cook, J. Fisher, S. Ishtiaq, N. Piterman, A. Taylor,

M. Vardi. BMA: Visual tool for modeling and analyzing biological networks. In Proc. CAV’12,
volume 7358 of LNCS. Springer (2012), pages 686–692.

11. F. Bernardini, M. Gheorghe, F. J. Romero-Campero, N. Walkinshaw. A hybrid approach to
modeling biological systems. In WMC 2007, volume 4860 of LNCS. Springer (2007), pages
138–159.

12. J. Blakes, J. Twycross, F. J. Romero-Campero, N. Krasnogor. The Infobiotics workbench: an
integrated in silico modelling platform for systems and synthetic biology. Bioinformatics, 27,
23, (2011), 3323–3324.

13. G. Ciobanu, M. J. Pérez-Jiménez, G. Păun, editors. Applications of Membrane Computing.
Natural Computing Series. Springer (2006).

14. E. Csuhaj-Varjú, M. Gheorghe, M. Stannett. P systems controlled by general topologies. In
Proc. UCNC’12, volume 7445 of LNCS. Springer (2012), pages 70–81.

15. D. Dı́az-Pernil, C. Graciani, M. Gutierrez-Naranjo, I. Pérez-Hurtado, M. Pérez-Jiménez. Soft-
ware for P systems. In Gh. Păun, G. Rozenberg, A. Salomaa, editors, The Oxford Handbook
of Membrane Computing. Oxford University Press (2010), pages 118–143.

16. D. Dı́az-Pernil, I. Pérez-Hurtado, M. Pérez-Jiménez, A. Riscos-Núñez. A P-Lingua program-
ming environment for membrane computing. In Proc. WMC’08, volume 5391 of LNCS.
Springer (2008), pages 187–203.

17. S. Eilenberg. Automata, languages and machines. Academic Press, New York (1994).
18. M. Gheorghe, F. Ipate, C. Dragomir. A kernel P system. In Proc. BWMC10. Fénix Editora

(2012), pages 153–170.
19. M. Gheorghe, F. Ipate, R. Lefticaru, C. Dragomir. An integrated approach to P systems formal

verification. In Proc. CMC’10. ProBusiness Verlag (2010), pages 225–238.
20. M. Gheorghe, F. Ipate, R. Lefticaru, M. J. Pérez-Jiménez, A. Turcanu, L. Mierla, L. Valen-

cia Cabrera, F. M. Garcia-Quismondo. 3-Col problem modelling using simple kernel P sys-
tems. International Journal of Computer Mathematics, 90, 4, (2013), 816–830.

21. A. Hinton, M. Z. Kwiatkowska, G. Norman, D. Parker. PRISM: A tool for automatic verifi-
cation of probabilistic systems. In Proc. TACAS’06, volume 3920 of LNCS. Springer (2006),
pages 441–444.

22. M. Holcombe. X-machines as a basis for dynamic system specification. Software Engineering
Journal, 3, 2, (1988), 69–76.

23. M. Holcombe, et al. Modelling complex biological systems using an agent-based approach.
Integr. Biol., 4, (2012), 53–64.

24. G. Holzmann. The Model Checker SPIN. IEEE Trans. Softw. Eng., 5, 23, (1997), 279–295.
25. F. Ipate, T. Balanescu, P. Kefalas, M. Holcombe, G. Eleftherakis. A new model of communi-

cating stream X-machine systems. Romanian Journal of Information Science and Technology,
6, 1-2, (2003), 165–184.

26. F. Ipate, R. Lefticaru, L. Mierla, L. Valencia Cabrera, H. Han, G. Zhang, C. Dragomir, M. J.
Pérez-Jiménez, M. Gheorghe. Kernel P systems: Applications and implementations. In Proc.
BIC-TA’13, volume 202 of Advances in Intelligent Systems and Computing. Springer (2013),
pages 1081–1089.

27. F. Ipate, R. Lefticaru, C. Tudose. Formal verification of P systems using SPIN. Int. Journal
Found. Computer Science, 22, 1, (2011), 133–142.

20 Ţurcanu et al.

28. F. Ipate, A. Turcanu. Modelling, verification and testing of P systems using Rodin and ProB.
In Proc. BWMC9. Fénix Editora (2011), pages 209–220.

29. M. Kwiatkowska, G. Norman, D. Parker. Symbolic Systems Biology, chapter Probabilistic
Model Checking for Systems Biology. Jones and Bartlett (2010), pages 31–59.

30. M. Leuschel, M. Butler. ProB: An automated analysis toolset for the B method. International
Journal on Software Tools for Technology Transfer, 10, 2, (2008), 185–203.

31. A. Obtulowicz, G. Paun. (In search of) Probabilistic P systems. Biosystems, 70, 2, (2003),
107–121.

32. I. Pérez-Hurtado, L. V. Cabrera, M. J. Pérez-Jiménez, M. A. Colomer. MeCoSim: A general
purpose software tool for simulating biological phenomena by means of P systems. In Proc.
BIC-TA’10. IEEE Xplore (2010), pages 637–643.

33. G. Păun. Computing with membranes. Journal of Computer and System Sciences, 61, 1,
(2000), 108–143.

34. G. Păun, G. Rozenberg, A. Salomaa, editors. The Oxford Handbook of Membrane Computing.
Oxford University Press (2010).

35. P. Richmond, D. Walker, S. Coakley, D. Romano. High performance cellular level agent-based
simulation with FLAME for the GPU. Briefings in Bioinformatics, 11, 3, (2010), 334–347.

36. A. Turcanu, F. Ipate. Modelling, testing and verification of P systems with active membranes
using Rodin and ProB. In Proc. CMC’11. Paris-Est University Press (2011), pages 459–468.

