
Identifiable Kernel P Systems

Marian Gheorghe1 and Florentin Ipate2

1 School of Electrical Engineering and Computer Science
University of Bradford

Bradford BD7 1DP, UK
m.gheorghe@bradford.ac.uk

2 Department of Computer Science
Faculty of Mathematics and Computer Science and ICUB

University of Bucharest
Str. Academiei 14, Bucharest 010014, Romania

florentin.ipate@ifsoft.ro

Abstract. This paper introduces the concept of identifiability for kernel P systems and
establishes a fundamental set of properties for identifiable kernel P systems.

1 Introduction

Inspired by the structure and functioning of living cells, membrane computing, the research field
initiated by Gheorghe Păun [14], has been intensively investigated in the last fifteen years. Its
main research themes investigated so far refer to the computational power of different variants of
membrane systems (also called P systems), hierarchies of languages or multiset classes produced
by these devices, their capability to solve hard problems, decidability and complexity aspects [15].
There have also been significant developments in using the P systems paradigm to model various
systems [2]. More recently, variants of P systems have been introduced in connection with modelling
problems in various areas, e.g., systems and synthetic biology [5], information in biotic systems
[17], synchronisation of distributed systems [3], grid algorithms [13], parallel algorithms utilised in
3D graphics [11].

Since P systems have been extensively used in various applications, it is a natural question to
ask whether these applications and their implementations are correct and error-free. As testing is
an essential part of software development and in many cases consumes large percentages of project
efforts and budgets (test generation, in particular), it has been recently considered in the context of
P systems applications. Some widely used testing approaches, such as mutation testing or transition
cover have been considered [12] or adapted (rule coverage [6]) for P systems specifications. Recently
a clas of generic P systems, called identifiable P systems, have been introduced and studied in
connection with testing [9].

More recently, P systems have been used to model and simulate systems and problems from
various areas. This has led to a multitude of P system variants. The newly introduced concept of
kernel P systems (kP systems, for short) [7, 8] combines various features of P systems in a coherent
manner, allowing to model complex applications and analyse these models.

The kP system model is supported by a modelling language, called kP-Lingua, capable of map-
ping a kP system specification into a machine readable representation. Furthermore, kP systems
are supported by a software framework, kPWorkbench [10], which integrates a set of related
simulation and verification methods and tools.

In this paper, we present the concept of identifiability for kernel P systems, continuing the
research introduced in [9]. Our contribution has the following significant components:

– Definition of identifiable kernel P systems, a non-trivial extension of identifiable P systems.

2 M. Gheorghe and F. Ipate

– A reformulation of some previous results regarding identifiable P systems in the context of
kernel P systems. In order to be self-contained some results regarding identifiable P systems
have been slightly changed and presented in this paper. Some results are new, showing the
capabilities of the kernel P systems.

The paper is structured as follows. Section 2 introduces basic concepts related to kernel P
systems. Section 3 investigates the issue of identifiability in the context of the kernel P system
model. Section 3 presents the main results, with complete proofs of the results introduced.

2 Preliminaries

Before proceeding, we introduce the notations used in the paper. For a finite alphabet A =
{a1, ..., ap}, A∗ denotes the set of all strings (sequences) over A. The empty string is denoted
by λ and A+ = A \ {λ} denotes the set of non-empty strings. For a string u ∈ A∗, |u|a denotes
the number of occurrences of a in u, where a ∈ A. For a subset S ⊆ A, |u|S denotes the number
of occurrences of the symbols from S in u. The length of a string u is given by

∑
ai∈A |u|ai

. The
length of the empty string is 0, i.e. |λ| = 0. A multiset over A is a mapping f : A→ N. Considering
only the elements from the support of f (where f(aij) > 0, for some j, 1 ≤ j ≤ p), the multiset is

represented as a string a
f(ai1

)
i1

. . . a
f(aip)

ip
, where the order is not important. In the sequel multisets

will be represented by such strings.

2.1 Kernel P System Basic Definitions

We start by introducing the concept of a compartment type utilised later in defining the compart-
ments of a kernel P system (shortly called kP system).

Definition 1. T is a set of compartment types, T = {t1, . . . , ts}, where ti = (Ri, σi), 1 ≤ i ≤ s,
consists of a set of rules, Ri, and an execution strategy, σi, defined over Lab(Ri), the labels of the
rules of Ri.

The compartments that appear in the definition of the kP systems will be constructed using
compartment types introduced by Definition 1. Each compartment, C, will be defined by a tuple
(t, w), where t ∈ T is the type of the compartment and w the initial multiset of it. The types
of rules and the execution strategies occurring in the compartment types will be introduced and
discussed later.

Definition 2. A kP system of degree n is a tuple

kΠ = (A,µ,C1, . . . , Cn, i0),

where A is a non-empty finite set, its elements are called objects; µ defines the initial membrane
structure, which is a graph, (V,E), where V is the set of vertices indicating compartments of the
kP system, and E is the set of edges; Ci = (ti, wi), 1 ≤ i ≤ n, is a compartment of the kP system,
as presented above; io, 1 ≤ i0 ≤ n, is the label of the output compartment, where the result is
obtained.

2.2 Kernel P System Rules

Each rule occurring in a kP system definition has the form r : t {g}, where r identifies the rule,
is its label, t is the rule itself and g is its guard. The part t is also called the body of the rule,
denoted also b(r).

Identifiable Kernel P Systems 3

The guards are constructed using multisets over A, as operands, and relational or Boolean
operators. The definition of the guards is now introduced. We start with some notations.

Let us denote Rel = {<,≤,=, 6=,≥, >}, the set of relational operators, γ ∈ Rel, a relational
operator, and an a multiset, consisting of n copies of a. We first introduce an abstract relational
expression.

Definition 3. If g is the abstract relational expression denoting γan and w a multiset, then the
guard g applied to w denotes the relational expression |w|aγn.

The abstract relational expression g is true for the multiset w, if |w|aγn is true.
We consider now the following Boolean operators ¬ (negation), ∧ (conjunction) and ∨ (dis-

junction). An abstract Boolean expression is defined by one of the following conditions:

– any abstract relational expression is an abstract Boolean expression;
– if g and h are abstract Boolean expressions then ¬g, g ∧ h and g ∨ h are abstract Boolean

expressions.

The concept of a guard, introduced here, is a generalisation of the promoter and inhibitor
concepts utilised by some variants of P systems.

Definition 4. If g is an abstract Boolean expression containing gi, 1 ≤ i ≤ q, abstract relational
expressions and w a multiset, then g applied to w means the Boolean expression obtained from g
by applying gi to w for any i, 1 ≤ i ≤ q.

As in the case of an abstract relational expression, the guard g is true with respect to the
multiset w, if the abstract Boolean expression g applied to w is true.

Example 1. If g is the guard defined by the abstract Boolean expression ≥ a5∧ < b3 ∨ ¬ > c and
w a multiset, then g applied to w is true if it has at least 5 a′s and no more than 2 b′s or no more
than one c.

In this paper we will use a simplified version of kP systems, called simple kP systems, using
only rewriting and communication rules. In what follows these will be called simply kP systems.

We say that a rule r : x→ y {g} is applicable to a multiset w iff x ⊆ w and g is true for w.

Definition 5. Any rule from a compartment Cli = (tli , wli) will be a rewriting and communi-
cation rule: x → y {g}, where x ∈ A+ and y has the form y = (a1, t1) . . . (ah, th), h ≥ 0, aj ∈ A
and tj, 1 ≤ j ≤ h, indicates a compartment type from T (see Definition 1) associated with a
compartment linked to the current one; tj might also indicate the type of the current compartment,
Ctli

; if a link does not exist (i.e., there is no link between the two compartments in E) then the
rule is not applied; if a target, tj, refers to a compartment type that appears in more than one
compartments connected to Cli , then one of them will be non-deterministically chosen.

2.3 Kernel P System Execution Strategies

In kP systems the way in which rules are executed is defined for each compartment type t from T
– see Definition 1. As in Definition 1, Lab(R) is the set of labels of the rules of R.

Definition 6. For a compartment type t = (R, σ) from T and r ∈ Lab(R), r1, . . . , rs ∈ Lab(R),
the execution strategy, σ, is defined by the following

– σ = λ, means no rule from the current compartment will be executed;
– σ = {r} – the rule r is executed;
– σ = {r1, . . . , rs} – one of the rules labelled r1, . . . , rs will be non-deterministically chosen and

executed; if none is applicable then nothing is executed; this is called alternative or choice;

4 M. Gheorghe and F. Ipate

– σ = {r1, . . . , rs}∗ – the rules are applied an arbitrary number of times (arbitrary parallelism);
– σ = {r1, . . . , rs}> – the rules are executed according to the maximal parallelism strategy;
– σ = σ1& . . .&σs – this means executing sequentially σ1, . . . , σs, where σi, 1 ≤ i ≤ s, describes

any of the above cases; if one of σi fails to be executed then the rest is no longer executed.

Definition 7. A configuration of a kP system, kΠ, with n compartments, is a tuple c = (c1, . . . , cn),
where ci ∈ A∗, 1 ≤ i ≤ n, is the multiset from compartment i. The initial configuration is
(w1, . . . , wn), where wi ∈ A∗ is the initial multiset of the compartment i, 1 ≤ i ≤ n.

A transition (or computation step), introduced by the next definition, is the process of passing
from one configuration to another.

Definition 8. Given two configurations c = (c1, . . . , cn) and c′ = (c′1, . . . , c
′
n) of a kP system,

kΠ, with n compartments, where for any i, 1 ≤ i ≤ n, ui ∈ A∗, and a multiset of rules Mi =
r
n1,i

1,i . . . r
nki,i

ki,i
, nj,i ≥ 0, 1 ≤ j ≤ ki, ki ≥ 0, a transition or a computation step is the process of

obtaining c′ from c by using the multisets of rules Mi, 1 ≤ i ≤ n, denoted by c =⇒(M1,...,Mn) c′,
such that for each i, 1 ≤ i ≤ n, c′i is the multiset obtained from ci by first extracting all the objects
that are in the left-hand side of each rule of Mi from ci and then adding all the objects a that are
in the right-hand side of each rule of Mi represented as (a, ti) and all the objects b that are in the
right-hand side of each rule of Mj, j 6= i, such that b is represented as (b, ti) and an appropriate
link between compartments exists.

In the theory of kP systems, each compartment might have its own execution strategy. In the
sequel we will consider that all the compartments will use the same execution strategy and the focus
will be on three such execution strategies, namely maximal parallelism, arbitray parallelism (also
called asynchronous execution) and sequential execution. These will be denoted by max, async
and seq, respectively. When in a transition from c to c′ using (M1, . . . ,Mn) we intend to refer to

a specific transition mode tm, tm ∈ {max, async, seq}, this will be denoted by c =⇒(M1,...,Mn)
tm c′.

A computation in a kP system is a sequence of transitions (computation steps).
A configuration is called final configuration if no rule can be applied to it. In a final configuration

the computation stops.
As usual in P systems, we only consider terminal computations, i.e., those arriving in a final

configuration and using one of the above mentioned transition modes. We are now ready to define
the result of a computation.

Definition 9. For a kP system kΠ using the transition mode tm, tm ∈ {max, async, seq}, in each
compartment, we denote by Ntm(Π) the number of objects appearing in the output compartment of
any final configuration.

Two kP systems kΠ and kΠ ′ are called equivalent with respect to the transition mode tm,
tm ∈ {max, async, seq}, if Ntm(kΠ) = Ntm(kΠ ′).

In this paper we will only deal with kP systems having one single compartment as this does
not affect the general method introduced here and makes the presentation easier to follow. Indeed,
limiting the investigation to one compartment kP systems does not affect the generality of the
results due to the fact that there are ways of flattening an arbitrary P system, including the kP
system discussed in this paper, into a P system with one single compartment. For details regarding
the flattening of a P system we refer mainly to [4], but similar approaches are also presented in
other papers ([16], [1]). Such a kP system will be denoted kΠ = (A,µ1, C1, 1), where µ1 denotes
the graph with one node. On the right-hand side of the rules there will simply be multisets over
A, as in the case of one single compartment there is no need to indicate where objects are sent to.

We now introduce the key concept we aim to investigate in this paper, namely identifiability of
kP systems. This concept has been studied for generic P systems and is now investigated for kP
systems where some additional constraints appear. The identifiability concept is first introduced
for simple rules and then is generalised for multisets of rules.

Identifiable Kernel P Systems 5

Definition 10. Two rules r1 : x1 → y1 {g1} and r2 : x2 → y2 {g2} from R1, are said to be
identifiable in configuration c if (i) they are applicable to c and (ii) if c =⇒r1 c′ and c =⇒r2 c′

then b(r1) = b(r2). Otherwise the rules are said to be non identifiable.

According to the above definition, the rules r1 and r2 are identifiable in c if whenever the result
of applying them to c is the same, their bodies, x1 → y1 and x2 → y2, are identical.

A multiset M = rn1
1 . . . rnk

k ,M ∈ R∗1, where ri : xi → yi {gi}, 1 ≤ i ≤ k, is applicable to the
multiset c iff xn1

1 . . . xnk

k ⊆ c and gi is true in c for any i, 1 ≤ i ≤ k.
Notation. Given a multiset M = rn1

1 . . . rnk

k , where ri : xi → yi {gi}, 1 ≤ i ≤ k, we denote by
rM the rule xn1

1 . . . xnk

k → yn1
1 . . . ynk

k {g1 ∧ · · · ∧ gk}, i.e., the concatenation of all the rules in M .

Definition 11. The multisets of rules M ′,M ′′ ∈ R∗1, are said to be identifiable, if there is a
configuration c where M ′ and M ′′ are applicable and if c =⇒M ′

c′ and c =⇒M ′′
c′ then b(rM ′) =

b(rM ′′).

Definition 12. We say that a kP system kΠ has identifiable rules if any two multisets of rules,
M ′,M ′′ ∈ R∗1, are identifiable.

3 Identifiable transitions in kP systems

In this section we investigate the property of identifiability for kP system rules and multisets of
rules. We start by introducing a notation utilised in this section.

One can observe, based on Definition 11, that the applicability of the multiset of rules M to
a certain configuration is equivalent to the applicability of the rule rM to that configuration. It
follows that one can study first the usage of simple rules.

Remark 1. For any two rules ri : xi → yi {gi}, 1 ≤ i ≤ 2, when we check whether they are
identifiable or not one can write them as ri : uvi → wzi {gi}, 1 ≤ i ≤ 2, where for any a ∈ A, a
appears in at most one of the v1 or v2, i.e., all the common symbols on the left-hand side of the
rules are in u.

We first show that the identifiability of two rules does not depend on the configurations in
which they are applicable. For the two rules introduced in Remark 1 let us denote by cr1,r2 , the
configuration uv1v2. Obviously this is the smallest configuration in which r1 and r2 are applicable,
given that g1 and g2 are true in uv1v2.

Remark 2. If ri : xi → yi {gi}, 1 ≤ i ≤ 2, are applicable in a configuration c and c ⊆ c′ then they
are not always applicable to c′. They are applicable to c′ when all gi, 1 ≤ i ≤ 2, are true in c′.

Remark 3. If the rules r1, r2 are not applicable to cr1,r2 then there must be minimal configurations
c where the rules are applicable and they are minimal, i.e., there is no c1, c1 ⊂ c, where the rules are
applicable. Such minimal configurations where r1, r2 are applicable are of the form tcr1,r2 , where
t ∈ A∗, t 6= λ.

Lemma 1. Two rules which are identifiable in a configuration c are identifiable in any configura-
tion containing c in which they are applicable.

Proof. Applying the two identifiable rules, r1 : x1 → y1 {g1} and r2 : x2 → y2 {g2}, to the
configuration c, one gets c′ and c′′ and c′ 6= c′′. If the rules are applicable to another configuration
c1 bigger than c, i.e, c1 = ct, then x1, x2 ⊆ c1 and g1 and g2 are true for c1. In this case the results
are c′1 = c′t and c′′1 = c′′t and obviously c′1 6= c′′1 , hence r1 and r2 are identifiable in c1.

Lemma 2. Two rules which are identifiable in a minimal configuration c are identifiable in any
other minimal configuration c′ in which they are applicable.

6 M. Gheorghe and F. Ipate

Proof. According to Remark 3, the configurations c, c′ can be written as c = t1cr1,r2 and c′ =
t2cr1,r2 , where t1, t2 ∈ A∗, and c 6= c′ iff t1 6= t2. According to Remark 1 the two rules can be
written as ri : uvi → wzi {gi}, 1 ≤ i ≤ 2, where for any a ∈ A, a appears in at most one of the
v1 or v2. The two rules are identifiable in t1c = t1uv1v2, i.e., t1wz1v2 6= t1wv1z2. This is true iff
z1v2 6= v1z2. The rules are applicable in c′ = t2uv1v2, i.e., uvi ⊆ c′ and gi is true in c′, 1 ≤ i ≤ 2.
Given that z1v2 6= v1z2, it follows that t2wz1v2 6= t2wv1z2. This means that the two rules are
identifiable in c′ = t2uv1v2 = t2cr1,r2 .

Corollary 1. Two rules r1 and r2 identifiable in a minimal configuration tcr1,r2 , t ∈ A∗, are
identifiable in any configuration in which they are applicable.

Proof. The result is an immediate consequence of Lemmas 1 and 2, and Remarks 1, 2 and 3.

One can formulate a similar result for two multisets of rules.

Corollary 2. Two multisets of rules M1 and M2 identifiable in tcrM1
,rM2

, t ∈ A∗, are identifiable
in any configuration in which they are applicable.

Proof. The result is an immediate consequence of Corollary 1 and Notation above.

From now on, we will always verify the identifiability (or non identifiability) only for the smallest
configurations associated with rules or multisets of rules and will not mention these configurations
anymore in the results to follow.

The applicability of two rules (multisets of rules) to a certain configuration depends not only
on the fact that their left hand sides (the concatenation of the left hand sides) must be contained
in the configuration and the gards must be true, but takes into account the execution strategy.

Remark 4. For the async transition mode two multisets of rules (and two rules) applicable in a
configuration are also applicable in any other bigger configuration, when the corresponding guards
are true. For the seq mode this is true only for multisets with one single element and obviously
for simple rules. In the case of the max mode the applicability of the multisets of rules (or rules)
to various configurations depends on the contents of the configurations and other available rules.
For instance if we consider a kP system containing the rules r1 : a → a {≥ a}; r2 : ab → abb {≤
b100}; r3 : bb→ c {≥ b2} and the configuration c = ab then in c only r1 and r2 are applicable and
identifiable, but in c1 = abb, containing c, r1 is no longer applicable, but instead we have r2 and
the multiset r1r3 applicable. In ab101 r2 and any multiset containing it are not applicable due to
the guard being false; also r1 is no longer applicable, but r1r

55
3 is now applicable, due to maximal

parallelism.

Remark 5. In the following results whenever we refer to arbitrary rules or multisets of rules they
are always meant to be applicable with respect to the transition mode.

We now provide a characterisation of the two rules to be (non) identifiable.

Theorem 1. The rules r1 : x1 → y1 {g1} and r2 : x2 → y2 {g2}, are not identifiable if and only
if they have the form r1 : uv1 → wv1 {g1} and r2 : uv2 → wv2 {g2} and for any a ∈ A, a appears
in at most one of v1 or v2.

Proof. Let us start with this implication “=⇒”. As we have already discussed one can use the
rules as r1 : uv1 → y1 {g1} and r2 : uv2 → y2 {g2} and for any a ∈ A, a appears in at most
one of v1 or v2; and one can consider one of the smallest configurations where they are applicable,
tcr1,r2 = tuv1v2, where t ∈ A∗. Applying these rules to tcr1,r2 , the following computations are
obtained:

tcr1,r2 =⇒r1 ty1v2; tcr1,r2 =⇒r2 ty2v1.

Identifiable Kernel P Systems 7

As these rules are not identifiable it turns out that the results of the two computations are the
same, i.e., ty1v2 = ty2v1 and this is true iff y1v2 = y2v1. Given that for any a ∈ A, a appears
in at most one of v1 or v2, it follows that y1 contains v1 and y2 contains v2, i.e., y1 = w1v1 and
y2 = w2v2. From the equality of the results of the computations it follows that w1 = w2 = w and
this proves the result.

Let us consider the opposite “⇐=”. In this case the rules are r1 : uv1 → wv1 {g1}, r2 : uv2 →
wv2 {g2} and for any a ∈ A, a appears in at most one of v1 or v2. We consider again one of the
smallest configurations where the rules are applicable, tcr1,r2 = uv1v2, t ∈ A∗, and apply the two
rules; then one can obtain:

tcr1,r2 =⇒r1 twv1v2; tcr1,r2 =⇒r2 tv1wv2.

Hence, r1 and r2 are not identifiable.
The above proof assumes that v1 and v2 are not empty multisets. The result remains true when

one of them or both are empty. In the latter case we have the same body of the rules, which might
have the right-hand side λ.

Based on the result provided by Theorem 1 one can state when two rules are identifiable.

Corollary 3. The rules r1 : uv1 → wz1 {g1} and r2 : uv2 → wz2 {g2}, such that for any a ∈ A,
a appears in at most one of v1 or v2, are identifiable if and only if v1 6= z1 or v2 6= z2.

With the results obtained so far one can determine, for a kP system, whether any two rules
are identifiable or not. In various transition modes utilised in kP systems – maximal parallelism or
asynchronous mode – in any computation step either single rules or multisets of rules are involved.
It is therefore important to determine whether the identifiability of single rules can be lifted to
multisets of rules. More precisely, we want to know whether it is true that the identifiability of any
pair of simple rules is inherited by the multisets of rules. Unfortunately, this is not true in general,
as it is shown by the next example.

Example 2. Let us consider a P system with the following four rules: r1 : a → b {≥ a}, r2 :
b → a {≥ b}, r3 : c → d {≥ c}, r4 : d → c {≥ d}. According to Corollary 3, any two rules
are identifiable, but M1 = r1r2 and M2 = r3r4 are not, as rM1 : ab → ab {≥ a ∧ ≥ b} and
rM2 : cd→ cd {≥ c ∧ ≥ d} are identity rules and according to Theorem 1 they are not identifiable.

However, one can show that some particular multisets of rules are identifiable when their
components are. More precisely, we have the following result.

Theorem 2. If r1 and r2 are identifiable then rn1 and rn2 are identifiable, for any n ≥ 1.

Proof. According to Corollary 3 the rules can be written r1 : uv1 → wz1 {g1} and r2 : uv2 →
wz2 {g2}, such that for any a ∈ A, a appears in at most one of v1 or v2, and v1 6= z1 or v2 6= z2.
This implies that vn1 6= zn1 or vn2 6= zn2 , for any n ≥ 1, i.e., rn1 and rn2 are identifiable.

One can show that identifiability of any two multisets of rules can be achieved in some special
circumstances. More precisely, we show that for any kP system one can construct an equivalent
kP system, in which the rules are slightly modified and an additional one introduced, and the later
has any multiset of rules identifiable (according to Definition 12).

We first make a notation based on some simple observations. Given a rule r : x → y {g}, this
is applicable in a configuration w iff x ⊆ w and g is true in w. It follows that the rule is not
applicable in w iff x * w or g is not true in w. If x = an1

1 ...anh

h and gx denotes the abstract Boolean
expression, ≥ an1

1 . . . anh

h , then x ⊆ w iff gx is true in w and x * w when gx is false in w.
One can now formulate a result similar with Theorems 2 and 3 in [9], but stronger than those

given the context provided by the kP systems model.

8 M. Gheorghe and F. Ipate

Theorem 3. For any kP system kΠ there is a kP system kΠL such that (i) Ntm(Π) = Ntm(ΠL),
for any of the transition modes tm, tm ∈ {max, async, seq}, and (ii) kΠL has identifiable rules.

Proof. (i) Let us consider a kP system kΠ = (A,µ1, C1, 1), as introduced in Definition 2. The
compartment C1 = (t1, w1) and t1 = (R1, tm), tm ∈ {max, async, seq}.

We build the following kP system

kΠL = (A′, µ1, C
′
1, 1)

where A′ = A ∪ Lab(R1) ∪ {#}, with Lab(R1) = {r | r : x → y {g} ∈ R1} and # a new symbol.
C ′1 = (t′1, w1) and t′1 = (R′1, tm). In order to define R′1 we make a few notations.

Let us consider R1 denoting the set of rules {r1 : x1 → y1 {g1}, . . . , rp : xp → yp {gp}}. For
each rule ri : xi → yi {gi}, we consider the abstract Boolean expression, gxi

, introduced above for
the left-hand side of the rule ri, 1 ≤ i ≤ p. We now denote gR1

the abstract Boolean expression
(gx1
∧ g1) ∨ · · · ∨ (gxp

∧ gp). One can observe that gR1
(¬gR1

) is true (false) in a multiset w iff at
least a rule (none of the rules) of R1 is applicable to w.

The multiset R′1 contains the following rules

– (1) r′i : xi → yiri {gi ∧ < #}, r′′i : xi → yiri# {gi ∧ < #}, for ri : xi → yiri {gi} ∈ R1,
1 ≤ i ≤ p.

– (2) r′′′i : ri → λ {≥ #}, 1 ≤ i ≤ p.
– (3) r′p+1 : #→ λ {¬gR1

}.
– (4) r′p+2 : #→ # {gR1

}.
In order to show that kΠ and kΠL are equivalent for the transition mode tm, tm ∈ {max, async, seq},

one can observe that for any terminal computation in kΠ

u0 = w1 =⇒M1
tm u1 . . . un−1 =⇒Mn

tm un

there is a terminal computation in kΠL and vice versa. Firstly, one can obtain

u′0 = w1 =⇒M ′
1

tm u′1 = u1Lab(M1) . . . u′n−1 = un−1Lab(M1) . . . Lab(Mn−1)

=⇒M ′
n

tm u′n = unLab(M1) . . . Lab(Mn−1)Lab(Mn)#h,

where Lab(M) denote the multiset of labels of rules occurring in M . M ′i , 1 ≤ i ≤ n−1, is obtained
from Mi, 1 ≤ i ≤ n−1, by replacing each rule r ∈ R1 by its corresponding r′ ∈ R′1; M ′n is obtained
from Mn, with r′ rules and h r′′ rules (h ≥ 1) introducing #h. Then we have the following cases

– tm = max, implies u′n = unLab(M1) . . . Lab(Mn−1)Lab(Mn)#h =⇒M ′
n+1

tm u′n+1 = un, where
the multiset of rules M ′n+1 includes rules of type (2) that remove the labels of the rules
Lab(M1) . . . Lab(Mn and rule (3) erasing #h.

– when tm = async, the rules of the multiset M ′n+1 may be applied in more than a step leading
to the same result, un.

– for tm = seq, we have h = 1 and as only one rule is applied in a step, un is obtained after a
number of step given by the cardinal of M ′n+1 .

One can observe that in any computation in kΠL in the first steps only rules r′i, 1 ≤ i ≤ p of
type (1) are applicable. When at least a rule r′′i , 1 ≤ i ≤ p of type (1) is applied, a symbol # is
introduced. In the next step the rules of type (2) are applicable. The rule (3) is used only when
none of the rules of type (1) are applicable, i.e., a computation simulating a terminal computation
in kΠ. Otherwise, a rule of type (4) is applicable, leading to an infinite computation.

(ii) Let us consider two multisets of rules, M1 and M2, applicable to a configuration in given
transition mode. Using a notation introduced earlier, one can obtain the rules, rM1 and rM2 ,
associated with the multisets of rules, and Remark 1 for providing the following format of them:

Identifiable Kernel P Systems 9

– rMi : uvi → wziLab(Mi) {gi}, 1 ≤ i ≤ 2, when rules of type (1) are used; and
– rMi

: uvi → wzi {gi}, 1 ≤ i ≤ 2, otherwise.

Obviously, vi 6= ziLab(Mi), 1 ≤ i ≤ 2, in the first case, and vi 6= zi, 1 ≤ i ≤ 2, in the last one.
According to Corollary 3 the rules are identifiable and consequently the multisets of rules, M1 and
M2.

4 Conclusions

This paper extends the concept of identifiability, previously introduced in the context of cell-like
P systems, to kernel P systems and establishes a fundamental set of properties for identifiable kP
systems. Future work will aim at developing a testing approach for kernel P systems. This will be
based on automata and X-machine theory and will be able to determine that, under certain, well
defined conditions, the implementation conforms to the specification.

Acknowledgements

This work is supported by a grant of the Romanian National Authority for Scientific Research,
CNCS-UEFISCDI, project number PN-III-P4-ID-PCE-2016-0210.

References

1. Agrigoroaiei, O., Ciobanu, G.: Flattening the transition P systems with dissolution. In: Proceedings
of the 11th International Conference on Membrane Computing. pp. 53–64. CMC’10, Springer-Verlag
(2010)

2. Ciobanu, G., Pérez-Jiménez, M.J., Păun, Gh.: Applications of Membrane Computing (Natural Com-
puting Series). Springer-Verlag (2005)

3. Dinneen, M.J., Yun-Bum, K., Nicolescu, R.: Faster synchronization in P systems. Natural Computing
11(4), 637–651 (2012)

4. Freund, R., Leporati, A., Mauri, G., Porreca, A.E., Verlan, S., Zandron, C.: Flattening in (tissue) P
systems. In: Revised Selected Papers of the 14th International Conference on Membrane Computing -
Volume 8340. pp. 173–188. CMC 2013, Springer-Verlag (2014)

5. Frisco, P., Gheorghe, M., Pérez-Jiménez, M.J. (eds.): Applications of Membrane Computing in Systems
and Synthetic Biology. Springer-Verlag; Emergence, Complexity and Computation Series, Vol. 7 (2014)

6. Gheorghe, M., Ipate, F.: On testing P systems. In: Membrane Computing, pp. 204–216. Springer-Verlag
(2009)

7. Gheorghe, M., Ipate, F., Dragomir, C.: Kernel P systems. In: Pre-Proc. 10th Brainstorming Week on
Membrane Computing, pp. 153–170. BWMC10, Fénix Editora, Universidad de Sevilla (2012)

8. Gheorghe, M., Ipate, F., Dragomir, C., Mierlă, L., Valencia-Cabrera, L., Garćıa-Quismondo, M., Pérez-
Jiménez, M.J.: Kernel P systems – version 1. In: Pre-Proc. 11th Brainstorming Week on Membrane
Computing

9. Gheorghe, M., Ipate, F., Konur, S.: Testing based on identifiable P systems using cover automata and
X-machines. Information Sciences 372, 565–578 (2016)

10. Gheorghe, M., Konur, S., Ipate, F., Mierlă, L., Bakir, M., Stannett, M.: An integrated model checking
toolset for kernel P systems. In: Revised Selected Papers of the 16th International Conference on
Membrane Computing - Volume 9504. pp. 153–170. CMC 2015, Springer-Verlag (2015)

11. Gimel’farb, G.L., Nicolescu, R., Ragavan, S.: P system implementation of dynamic programming stereo.
Journal of Mathematical Imaging and Vision 47(1–2), 13–26 (2013)

12. Ipate, F., Gheorghe, M.: Mutation based testing of P systems. International Journal of Computers,
Communication and Control 4(3), 253–262 (2009)

10 M. Gheorghe and F. Ipate

13. Nicolescu, R.: Structured grid algorithms modelled with complex objects. In: Revised Selected Papers
of the 16th International Conference on Membrane Computing - Volume 8340. pp. 56–79. CMC 2013,
Springer-Verlag (2014)

14. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143
(2000)

15. Păun, Gh., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford
University Press, Inc. (2010)

16. Verlan, S.: Using the formal framework for P systems. In: Revised Selected Papers of the 14th Interna-
tional Conference on Membrane Computing - Volume 9504. pp. 321–337. CMC 2015, Springer-Verlag
(2015)

17. Vincenzo, M.: Infobiotics. Springer-Verlag; Emergence, Complexity and Computation Series, Vol. 3
(2013)

