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Abstract - In this paper, we provide solutions to two NP-complete prob-
lems, the Subset Sum and the Partition, using a new class of membrane
systems called kernel P systems. The complexities of the solutions are also

investigated.
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1 Introduction

Membrane systems were introduced in [12]! at the beginning of the millen-
nium as a new computational model inspired by the structure and distribu-
tion of the compartments of living cells, as well as by the main bio-chemical
interactions occurring within compartments and at the inter-cellular level.
They were later also called P systems. A comprehensive overview of the
main research developments in this area is provided in [13]. The key chal-
lenges of the membrane systems area and a discussion on some future re-
search directions, can be found in a more recent survey paper [6]. Amongst
the most investigated topics in membrane systems are those related to the
study of complexity for various models and efficiency in providing solutions
to complex problems, more often NP-complete problems.

Different (uniform) polynomial time solutions have been provided for the
Subset Sum problem using families of P systems with active membranes [14],
P systems with membrane creation [7], tissue P systems with cell division
[2] and P systems with symport/antiport and membrane division [15].

Some (uniform) polynomial time solutions have also been produced for
the Partition problem by using tissue P systems [1], P systems with cell
division [8] and P systems with cell separation [16].

It is worth mentioning that all the classes of P systems providing so-
lutions to such problems not only use the multiset operations occurring in
membrane computing, but also rely on some encodings of the problems in

[12] was circulated as a research report already from the Fall 1998.



complex data structures expressed as multisets that show similarities with
DNA models. This confirms the statement in [11] regarding the roles of the
membranes and DNA structures for life, but also illustrates their modelling
capabilities in natural computing.

Kernel P (kP) systems have been introduced in [3] to unify the specifi-
cation of different variants of P systems and reconsidered in [4]. An efficient
solution to the 3-colouring problem has been provided in [5]. The kP sys-
tems have been also used to specify and analyse, through formal verification,
various biology systems [10, 9].

In this paper we provide solutions to both the Subset Sum and Partition
problems using kernel P systems. For both problems, the kernel P system
solutions are provided. These solutions can work in maximal parallelism,
asynchronous or sequential manner.

The structure of the paper is as follows. Section 2 provides the notation
to be used in the paper. Section 3 introduces kernel P systems. Section
4 presents the kernel P system solutions for the Subset Sum and Partition
problems. Finally, Section 5 draws the conclusions.

2 Preliminaries

An alphabet, A, is a non-empty finite set whose elements are called symbols.
A string or word over A is a finite sequence of symbols from A. If v and
v are strings over A, then wv is the string obtained by juxtaposition (or
concatenation) of the two strings v and v. The number of symbols in a
string w is called the length of u, denoted by |u|. The empty string (with
length zero) is denoted by A. The set of all strings over an alphabet A is
denoted by A* (AT, when the empty string is removed from the set). Finite
or infinite subsets of A* are called languages over A. If u € A* and a € A,
then |ul, denotes the number of occurrences of symbol a in string u.

A multiset m over a set A is a pair (A, f) where f : A — N is a mapping.
The support of the multiset m is defined as supp(m) = {z € A | f(x) > 0}.
A multiset, which in general might be infinite, is empty (respectively, finite)
if its support is the empty set (respectively, a finite set). If m = (A, f)
is a finite multiset over A and supp(m) = {a1,...,ax}, then it will be

denoted as m = {a{(al), e ,ag(ak)}. It can also be represented by the string

af (@) ..ai(a’“)

1 over the alphabet {a1,...,ax}.

3 Kernel P Systems

In this section we define a simplified version of kernel P systems. The full
model is defined in [3, 4] and an application to solve the three colouring
problem can be found in [5]. We first introduce some preliminary concepts.



Definition 3.1 Let Rel = {<,<,=,#,>,>} be a set of relational oper-
ators. Let A be a non-empty finite set. Then, a multiset over A with
relational operators from Rel is an expression w = 61a}* ... 0a,*, where
art ... ap* is a string over A (in which a; and aj are not necessarily dis-
tinct, 1 <i<j<k), and §; € Rel, for each j,1 < j < k.

Remark 3.1 A guard g is a finite disjunction of expressions w introduced
by Definition 3.1; |g| denotes the number of w expressions occurring in g;
lg| is called the length of the guard g. A particular case of a guard g is the
empty set. In this case, the guard is omitted.

Definition 3.2 Given two non-empty finite sets A (alphabet), L (labels)
and l € L, the finite set of rules associated with | is denoted by R;. A rule
from Ry has one of the following two forms:

(a) ()i = [wiln - [ynli, {9}, where z € A* and y; € A*, l; € L, for all j,
1 <j<h,andg is a guard ( h-membrane division rule). The length of
the rule is defined as ||+ |y1|+---+|yn| (lg9] can also be considered).

(b) x — y {g}, where x € A", y is a string over A x L, y = (a1,t1) ...
(an,tn), withaj € Aandt; € L,1 < j < h, and g is a guard (rewriting
and communication rule). The length of the rule is defined as |x|+ |y|
(the complexity of the guard g, denoted by |g|, can also be considered
for this rule).

Definition 3.3 Given two non-empty finite sets A and L, a compartment
is a tuple (I,wg, Ry), where l € L, wo is a multiset over A and Ry is a finite
set of rules associated with the compartment having the label [.

Definition 3.4 Let C be a compartment, represented by a tuple (I, wo, Ry)
as in Definition 3.3, and v be a rule from R; with the guard g. The guard g
is considered true at a given moment when the current multiset of C is z if
and only if the following happens:

(a) If g = Ohal" ... 0a*, then for every j, 1 < j < k, |z|q;0;n; holds,
a; € A, Qj € Rel.

(b) If g is a finite non-empty disjunction of multisets over A with relational
operators from Rel, denoted by g = wy | --- | wy, then there exists j,
1 < j <p, such that w; is true, according to (a).

(c) If g is an empty set, then it is always evaluated to true.

If one needs to refer to the environment then in L one should have a corre-
sponding label for it. The environment does not contain any rules.



Definition 3.5 A simple kernel P (skP for short) system of degree n > 1
s a tuple
skIl = (A, L, IO, 01, ceey Cn, Hy io),

where
e A and L are non-empty finite sets of objects and labels, respectively;
e 10 is a finite alphabet, IO C A, of the environment objects;
o (,...,C, are compartments, as in Definiton 3.3;

e u = (V,E) is an undirected graph, where V. C L are vertices and E
the edges, and

e iy € L is the label of the output compartment.

An skP system (see Definition 3.5) consists of a set of n compartments,
Ci,...,C,, interconnected by edges from FE, of the undirected graph u.
Each compartment is identified by a label from L associated with a vertex
of the graph p, with an initial multiset over A, and a finite set of rules.
The compartment receiving the result of a computation, ig, will always
be the environment. An h-membrane division rule, [x]; — [v1];, - [unli,
{g}, associated with a compartment C' = (I, wp, R;) is applicable at a given
instant to the current multiset z if the guard g is evaluated true with respect
to z and x is in the multiset z. When such a rule is applied, the following
actions take place: (i) the compartment labelled [ is replaced by the h
compartments labelled Iq,...,l; and z is replaced by the multiset y; in
compartment [;; (ii) the content of I (except x) is copied into each of these
compartments after using all the applicable rewriting and communication
rules; and (iii) all the links of [ are inherited by each of the newly created
compartments.

A rewriting and communication rule, z — (aj,t1) ... (an, tn) {g}, associ-
ated with a set of rules, R;, of a compartment, C' = (I, wp, R;), is applicable
at a given moment to the current multiset z if the guard ¢ is evaluated
true, x is contained in z and the target t; € L, 1 < j < h, is either the
label of the current compartment, [, or the label of an existing neighbour
({l,t;} € E). When such a rule is applied, the object a; is sent to the com-
partment labelled ¢;, for each j, 1 < j < h. If a target, t;, refers to a label
that appears more than once, then one of the involved compartments is non-
deterministically chosen. When ¢; indicates the label of the environment,
the corresponding object a; is sent to the environment.

In an skP system, the rules are applied in accordance with various strate-
gies:

(i) mazimally parallel mode: a multiset of rules are selected in an arbi-
trary step such that no additional rule is applicable in that step (the



usual restriction that at most one rule of type (a) — membrane divi-
ston rule — per membrane can be used in each step also applies to these
systems);

(ii) asynchronous mode: an arbitrary number of rules of type (b) and at
most one of type (a) are applied;

(iii) sequential mode: one rule per compartment is used in each step of the
computation.

A more generic strategy can be also instantiated in each compartment, but
this is not discussed in this paper (see [3, 4] for the details).

4 Modelling Results

In this section we illustrate the modelling capabilities of the skP systems
on two well known NP-complete problems: the Subset Sum and Partition
problems.

4.1 Modelling the Partition Problem with skP Systems

The partition problem is formulated as follows: Let V be a finite set and
weight be a function on V' with positive integer values (this is an additive
function). It is requested to find, if it exists, a partition of V', denoted
Vi, Va, such that weight(V1) = weight(V2). A solution to this problem
is provided in [1] by using a recognizer tissue P system with cell division
and symport/antiport rules. We make the following notations: let V =
{v1,...,vn}, be a finite set, with weight(v;) = k;, where k; is a positive
integer, 1 <1 < n.

We provide a solution to the partition problem by using a classical ap-
proach in membrane systems, also illustrated in [1], which consists of the
following stages: working space generation, verification and solution genera-
tion. In the first stage, an exponential space is generated in linear time; this
consists of all the compartments that might contain a solution to the prob-
lem. Next, in the verification stage, it is checked, in every compartment,
whether a solution has been produced. Finally, if at least one solution is
found, then a special symbol, yes, is sent to the environment, labelled 0;
otherwise a no is sent to it.

We build the following skP system, which depends on n, for solving the
partition problem (i.e., checking whether there is a partition, Vi, Va, with
weight (V1) = weight(V3)) and working in the mazimally parallel manner:

ska(n) = (A,L,IO, H, Cl, CQ, 0),

where



A is the alphabet;
L ={0,1,2};

10 consists of yes, no; at the end, after n + 3 steps, one of the two
possible answers will be sent out;

C1 = (1, w1, R1), C2 = (2, w20, R2), where w10 = 5, wa 9 = Ajcode(n),
with code(n) = v’fl ... vF being the code of the weights of the elements
of V ;

 is given by the graph with edge (1,2);
R; and Ry are given below;

— Ry contains:
r11: S — (yes,0) {> T},
r2:8 = (no,0){>F < T},
r1,1 or r12 sends into the environment the answer yes or no,
respectively;

— Ry contains
membrane division rules:
ro; t [Aila = [BiAis1]2[Ait1]2,1 < i < n,
T2n - [Anb — [BnX]Z[X]%
these rules generate all the subsets of V in n steps (2" subsets);
each of them being a potential V; (V43 is its complement);
rewriting rules:
72,45 + Vilj —>U{: Bi#Bj =X |7£Bl :Bj :X},
1<i<j<n,
ron+1 - X — Y; and
rewriting and communication rules:
Tont2 Y = (FyI{Z v [ [ > on},
T2n+3 ! Y —» (T, 1){< v < Un}.

One starts the generation stage with two compartments, Cy and Cbs.
In the compartment C1, initially containing a symbol S, the output
of the problem, either yes or no, will be collected. The compartment
C5 has initially a codification of the set V' with the weights of its ele-
ments — code(n) = vlfl ...vFn. Cy will be divided, using 2,1, into two
compartments with the same label 2: one with BjAs and the other
only with As. The presence of B; means that the symbol a; is in the
associated multiset (its absence means that it is not in the associated
multiset). Then, each of these compartments is divided by using 32
and the division process ends by applying r2,,. As already mentioned,
after n steps, 2" compartments C are generated, all connected to the
compartment C7. Each compartment corresponds to one of the 2"



multisets of V. The elements of the multiset are codified by the pres-
ence of the corresponding symbols B; in the compartment. This means
that the multiset V3 = {a;,,...,a;,} corresponds to a compartment Co
with B;, ... B

The verification stage consists of two steps. In step n + 1, in each
compartment Cy every occurrence of an element of the subset of V; C
V' is paired up with an element of the complement as many times as
the weights permit using rg; ;. In parallel to this, X is transformed
into Y using 72 ,41. Step n + 2 consists of sending either T" or F' to
compartment C7 depending on whether all the elements of the subset
and its complement are paired up or the weights of the subsets are
different, respectively. In these cases, the rules rg,43 or 79,42 are
used.

ip*

Finally, in step n+ 3, the solution is generated, by providing an answer
into the environment, either yes or no, using one of two rules from C}.

We make some notations with respect to the partitions generated by the
above model. As it generates all possible partitions, we denote them by
Vig,Vag, 1 <1< 2" Let us denote for the partition Vi; = {a;1,...,aip,},
Voy ={aj1,...,a5q}, m +q = n, where weight(ap) = kp, 1 < h < n, the
following value:

my; = min{ Z ki, s Z kj, } and M = max{m; |1 < h < 2"}
1<h<p 1<h<q

Theorem 4.1 An answer to the Partition problem of a set with n elements
is provided by an skP system using; (i) mazimal parallelism in n + 3 steps
and (ii) asynchronous or sequential behaviour in at most n+ 3 + M steps.

Proof. The proof of the first part, (i), follows immediately from the above
construction and the explanations provided.
For (ii) we make the following observations:

e The working space generation stage takes n steps as the rules ry; are
applied one per each compartment and no other rule is applicable in
this stage.

e We replace the rule rg,1 by
Té,n—i—l P X = Y{ngi,jgn;i;éj =DB; # Bj = X(Z v #vj |# v > vj |
# vi 7 vj)}
This rule replaces X by Y only when for all the pairs B; corresponding
to an element of V; and B; corresponding to an element of the com-
plement of V; (= B; # Bj) all the values v; and v; have been paired
up - either have one of them > v; # v; | # v; > v; or none, # v; # vj.



e The verification stage consists of first applying the rules rp;; — an
arbitrary number per step (asynchronous mode) or only one of them
(sequential mode). Finally, when none of these rules is applicable,
75 41 1S applied.

e The final stage consists of applying one of the rules 42, 7p+3.

One can observe that the first and last stages take n + 2 steps and one
more step is the execution of the rule 5, ;. The rules ry;; take in the
compartment corresponding to the partition Vi, Vo, at most m; steps. So,
the overall maximum is M, according to the previous notation. This proves
the result. O

4.2 Modelling the Subset Sum Problem with skP Systems

The subset sum problem can be easily derived from the partition problem.
It is formulated as follows: Let V' be a finite set and weight be a function on
V with positive integer values (this is an additive function). It is requested
to find, if it exists, a subset of V', denoted W, such that weight(W) = k. A
solution to this problem is provided in [7] by using a recognizer P system
with membrane creation. We use the following notations introduced above:
V ={v1,...,v,} is a finite set, with weight(v;) = k;, where k; is a positive
integer, 1 <17 < n.
We build the following skP system (for the maximally parallel mode)

SkHS(n) = (A7 L? IO? /"L7 Ci? Cé? O)?

where A, L, IO and pu are as in skIlp built for the partition problem; C! =
(i,w§707R;), 1 <4 <2, with wyg = wip and wh, = Ajcode’(n), where
code'(n) = v§' .. vukn; R) = Ry and R} consist of 94, 1 < i < n+1 from
Ry, the rewriting rules replacing ro; j, 1 <1 < j < n, are
Typi1ei s Vi > v{=Bi=X}1<i<n
and the rules replacing rg 42,72 043 are
Monsa Y = (F,1) {# v*},
Té,2n+3 Y — <T7 1) {: Uk}'

For the asynchronous and sequential modes the rule ry 41 is replaced
by a1t X = Y{[lic;<,(= Bi #vi = X |# Bi = X)}.

We make the following notations: if V' = {aq,...,a,} and weight(ap) =
kp, 1 < h < n, is the weight function then W; = {a;,,. "aim}’ 1<l <2,
describes a subset of V. Let us denote for each Wi, 1 <[ <27

my = Z ki, and M' = max{mj |1 < h <2"}.
1<h<p

One can now formulate the main result of this section.



Theorem 4.2 A answer to the Subset Sum problem of a set with n elements
is provided by an skP system using; (i) mazimal parallelism in n + 3 steps
and (i) asynchronous or sequential behaviour in at most n+ 3 + M’ steps.

Proof. The proof of this theorem is very similar to the proof of Theorem
4.1 and we leave it as an exercise. O

The families of P systems solving these NP-complete problems are poly-
nomially uniform by a Turing machine as the other solutions to these prob-
lems provided in the current literature.

5 Conclusions

In this paper, we have illustrated the modelling power of kernel P systems
on two well known NP-complete problems: the Subset Sum and the Par-
tition problems. For each of these two problems, the kP systems solutions
that work in maximal parallelism, asynchronous and sequential manner are
provided.

In our future work we aim to show how formal verification methods,
embedded in the tools developed for this model, are utilised for checking
various properties of the systems investigated.
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